TY - JOUR
T1 - Evaluating the Performance of Algorithms in Axillary Microwave Imaging towards Improved Breast Cancer Staging
AU - Pato, Matilde
AU - Eleutério, Ricardo
AU - Conceição, Raquel C.
AU - Godinho, Daniela M.
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00645%2F2020/PT#
Publisher Copyright:
© 2023 by the authors.
PY - 2023/1/29
Y1 - 2023/1/29
N2 - Breast cancer is the most common and the fifth deadliest cancer worldwide. In more advanced stages of cancer, cancer cells metastasize through lymphatic and blood vessels. Currently there is no satisfactory neoadjuvant (i.e., preoperative) diagnosis to assess whether cancer has spread to neighboring Axillary Lymph Nodes (ALN). This paper addresses the use of radar Microwave Imaging (MWI) to detect and determine whether ALNs have been metastasized, presenting an analysis of the performance of different artifact removal and beamformer algorithms in distinct anatomical scenarios. We assess distinct axillary region models and the effect of varying the shape of the skin, muscle and subcutaneous adipose tissue layers on single ALN detection. We also study multiple ALN detection and contrast between healthy and metastasized ALNs. We propose a new beamformer algorithm denominated Channel-Ranked Delay-Multiply-And-Sum (CR-DMAS), which allows the successful detection of ALNs in order to achieve better Signal-to-Clutter Ratio, e.g., with the muscle layer up to (Formula presented.) dB, a Signal-to-Mean Ratio of up to (Formula presented.) dB and a Location Error of (Formula presented.) mm. In multiple target detection, CR-DMAS outperformed other well established beamformers used in the context of breast MWI. Overall, this work provides new insights into the performance of algorithms in axillary MWI.
AB - Breast cancer is the most common and the fifth deadliest cancer worldwide. In more advanced stages of cancer, cancer cells metastasize through lymphatic and blood vessels. Currently there is no satisfactory neoadjuvant (i.e., preoperative) diagnosis to assess whether cancer has spread to neighboring Axillary Lymph Nodes (ALN). This paper addresses the use of radar Microwave Imaging (MWI) to detect and determine whether ALNs have been metastasized, presenting an analysis of the performance of different artifact removal and beamformer algorithms in distinct anatomical scenarios. We assess distinct axillary region models and the effect of varying the shape of the skin, muscle and subcutaneous adipose tissue layers on single ALN detection. We also study multiple ALN detection and contrast between healthy and metastasized ALNs. We propose a new beamformer algorithm denominated Channel-Ranked Delay-Multiply-And-Sum (CR-DMAS), which allows the successful detection of ALNs in order to achieve better Signal-to-Clutter Ratio, e.g., with the muscle layer up to (Formula presented.) dB, a Signal-to-Mean Ratio of up to (Formula presented.) dB and a Location Error of (Formula presented.) mm. In multiple target detection, CR-DMAS outperformed other well established beamformers used in the context of breast MWI. Overall, this work provides new insights into the performance of algorithms in axillary MWI.
KW - axillary lymph nodes
KW - beamformer algorithms
KW - breast cancer staging
KW - microwave imaging
UR - http://www.scopus.com/inward/record.url?scp=85147892841&partnerID=8YFLogxK
U2 - 10.3390/s23031496
DO - 10.3390/s23031496
M3 - Article
C2 - 36772536
AN - SCOPUS:85147892841
SN - 1424-8220
VL - 23
JO - Sensors
JF - Sensors
IS - 3
M1 - 1496
ER -