Enhanced dissolution of ibuprofen using ionic liquids as catanionic hydrotropes

T. E. Sintra, K. Shimizu, S. P.M. Ventura, S. Shimizu, J. N. Canongia Lopes, J. A.P. Coutinho

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)


The therapeutic effectiveness of a drug largely depends on its bioavailability, and thus ultimately on its aqueous solubility. Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are extensively used in the formulation of drugs and personal care products. Recently, some ionic liquids were shown to display a strong ability to enhance the solubility of biomolecules through hydrotropy. In this work, the impact of the ionic liquid chemical structures and their concentration on the solubility of ibuprofen was evaluated and compared with the performance of conventional hydrotropes. The results obtained clearly evidence the exceptional capacity of ionic liquids to enhance the solubility of ibuprofen. [C 4 C 1 im][SCN] and [C 4 C 1 im][N(CN) 2 ] seem to be the most promising ionic liquids for ibuprofen solubilisation, where an increase in the solubility of 60-A nd 120-fold was observed with ionic liquid concentrations of circa 1 mol kg -1 , respectively. Dynamic light scattering and molecular dynamics simulations were used to investigate the mechanism of the IL-mediated drug solubility and the results obtained indicate that the structure of aqueous solutions of ionic liquids and the role it plays in the formation of ionic liquid-drug aggregates is the mechanism driving the hydrotropic dissolution.

Original languageEnglish
Pages (from-to)2094-2103
Number of pages10
JournalPhysical Chemistry Chemical Physics
Issue number3
Publication statusPublished - 1 Jan 2018


Dive into the research topics of 'Enhanced dissolution of ibuprofen using ionic liquids as catanionic hydrotropes'. Together they form a unique fingerprint.

Cite this