Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing

Bruno Silva, Ruben Marques, Dinis Faustino, Paulo Ilheu, Tiago Santos, João Sousa, André Dionisio Rocha

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
89 Downloads (Pure)

Abstract

With the spread of the Industry 4.0 concept, implementing Artificial Intelligence approaches on the shop floor that allow companies to increase their competitiveness in the market is starting to be prioritized. Due to the complexity of the processes used in the industry, the inclusion of a real-time Quality Prediction methodology avoids a considerable number of costs to companies. This paper exposes the whole process of introducing Artificial Intelligence in plastic injection molding processes in a company in Portugal. All the implementations and methodologies used are presented, from data collection to real-time classification, such as Data Augmentation and Human-in-the-Loop labeling, among others. This approach also allows predicting and alerting with regard to process quality loss. This leads to a reduction in the production of non-compliant parts, which increases productivity and reduces costs and environmental footprint. In order to understand the applicability of this system, it was tested in different injection molding processes (traditional and stretch and blow) and with different materials and products. The results of this document show that, with the approach developed and presented, it was possible to achieve an increase in Overall Equipment Effectiveness (OEE) of up to 12%, a reduction in the process downtime of up to 9% and a significant reduction in the number of non-conforming parts produced. This improvement in key performance indicators proves the potential of this solution.

Original languageEnglish
Article number62
Number of pages24
JournalProcesses
Volume11
Issue number1
DOIs
Publication statusPublished - 27 Dec 2022

Keywords

  • Artificial Intelligence
  • Data Augmentation
  • Human-in-the-Loop labeling
  • injection molding
  • OEE
  • predictive quality

Fingerprint

Dive into the research topics of 'Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing'. Together they form a unique fingerprint.

Cite this