Endomorphism regular Ockham algebras of finite boolean type

T. S. Blyth, H. J. Silva

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

If (L;f) is an Ockham algebra with dual space (X;g), then it is known that the semigroup of Ockham endomorphisms on L is (anti-)isomorphic to the semigroup Λ(X; g) of continuous order-preserving mappings on X that commute with g. Here we consider the case where L is a finite boolean lattice and f is a bijection. We begin by determining the size of Λ(X;g), and obtain necessary and sufficient conditions for this semigroup to be regular or orthodox. We also describe its structure when it is a group, or an inverse semigroup that is not a group. In the former case it is a cartesian product of cyclic groups and in the latter a cartesian product of cyclic groups each with a zero adjoined. An Ockham algebra (L;f) is a bounded distributive lattice L on which there is defined a dual endomorphism f. For the basic properties of Ockham algebras we refer the reader to [1]. The most obvious example of an Ockham algebra is, of course, a boolean algebra (B; ′). In general, a boolean lattice can be made into an Ockham algebra in many different ways. Throughout what follows we shall assume that the Ockham algebra (L;f) is of finite boolean type, in the sense that L is a finite boolean lattice and f is a dual automorphism. Then (L;f) necessarily belongs to the Berman class Kp,o for some p. If L ≃ 2k then, by [1, Chapter 4], the dual space (X;g) is such that X is discretely ordered with |X| = k, and g is a permutation on X such that g2p = idx. We shall denote by X1,... , Xm the orbits of g. For each i we choose and fix a representative xi ε. Xi. Defining ci = |Xi|, for each i, we therefore have Xi = {xi,g(xi),g2(xi),...,g ci-1(xi)}. Consider the set Λ(X;g) consisting of those mappings v:X→X that commute with g. By duality [2] we know that (Λ(X;g), °) is a semigroup that is (anti-)isomorphic to the semigroup End((L;f), °) of Ockham endomorphisms on L. By considering Λ(X;g) we can therefore obtain properties of End(L;f). Our principal objective is to determine precisely when this semigroup is regular. For this purpose, we begin by observing the following results.

Original languageEnglish
Pages (from-to)99-110
Number of pages12
JournalGlasgow Mathematical Journal
Volume39
Issue number1
DOIs
Publication statusPublished - 1 Dec 1997

Fingerprint

Ockham Algebra
Endomorphism
Semigroup
Boolean Lattice
Dual space
Cartesian product
Endomorphisms
Cyclic group
Commute
Isomorphic
Inverse Semigroup
Distributive Lattice
Boolean algebra
Bijection
Automorphism
Permutation
Duality
Choose
Orbit
Denote

Cite this

@article{8a7d3a67cd864918bda8e24ef742e0f2,
title = "Endomorphism regular Ockham algebras of finite boolean type",
abstract = "If (L;f) is an Ockham algebra with dual space (X;g), then it is known that the semigroup of Ockham endomorphisms on L is (anti-)isomorphic to the semigroup Λ(X; g) of continuous order-preserving mappings on X that commute with g. Here we consider the case where L is a finite boolean lattice and f is a bijection. We begin by determining the size of Λ(X;g), and obtain necessary and sufficient conditions for this semigroup to be regular or orthodox. We also describe its structure when it is a group, or an inverse semigroup that is not a group. In the former case it is a cartesian product of cyclic groups and in the latter a cartesian product of cyclic groups each with a zero adjoined. An Ockham algebra (L;f) is a bounded distributive lattice L on which there is defined a dual endomorphism f. For the basic properties of Ockham algebras we refer the reader to [1]. The most obvious example of an Ockham algebra is, of course, a boolean algebra (B; ′). In general, a boolean lattice can be made into an Ockham algebra in many different ways. Throughout what follows we shall assume that the Ockham algebra (L;f) is of finite boolean type, in the sense that L is a finite boolean lattice and f is a dual automorphism. Then (L;f) necessarily belongs to the Berman class Kp,o for some p. If L ≃ 2k then, by [1, Chapter 4], the dual space (X;g) is such that X is discretely ordered with |X| = k, and g is a permutation on X such that g2p = idx. We shall denote by X1,... , Xm the orbits of g. For each i we choose and fix a representative xi ε. Xi. Defining ci = |Xi|, for each i, we therefore have Xi = {xi,g(xi),g2(xi),...,g ci-1(xi)}. Consider the set Λ(X;g) consisting of those mappings v:X→X that commute with g. By duality [2] we know that (Λ(X;g), °) is a semigroup that is (anti-)isomorphic to the semigroup End((L;f), °) of Ockham endomorphisms on L. By considering Λ(X;g) we can therefore obtain properties of End(L;f). Our principal objective is to determine precisely when this semigroup is regular. For this purpose, we begin by observing the following results.",
author = "Blyth, {T. S.} and Silva, {H. J.}",
year = "1997",
month = "12",
day = "1",
doi = "10.1017/S0017089500031967",
language = "English",
volume = "39",
pages = "99--110",
journal = "Glasgow Mathematical Journal",
issn = "0017-0895",
publisher = "Cambridge University Press",
number = "1",

}

Endomorphism regular Ockham algebras of finite boolean type. / Blyth, T. S.; Silva, H. J.

In: Glasgow Mathematical Journal, Vol. 39, No. 1, 01.12.1997, p. 99-110.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Endomorphism regular Ockham algebras of finite boolean type

AU - Blyth, T. S.

AU - Silva, H. J.

PY - 1997/12/1

Y1 - 1997/12/1

N2 - If (L;f) is an Ockham algebra with dual space (X;g), then it is known that the semigroup of Ockham endomorphisms on L is (anti-)isomorphic to the semigroup Λ(X; g) of continuous order-preserving mappings on X that commute with g. Here we consider the case where L is a finite boolean lattice and f is a bijection. We begin by determining the size of Λ(X;g), and obtain necessary and sufficient conditions for this semigroup to be regular or orthodox. We also describe its structure when it is a group, or an inverse semigroup that is not a group. In the former case it is a cartesian product of cyclic groups and in the latter a cartesian product of cyclic groups each with a zero adjoined. An Ockham algebra (L;f) is a bounded distributive lattice L on which there is defined a dual endomorphism f. For the basic properties of Ockham algebras we refer the reader to [1]. The most obvious example of an Ockham algebra is, of course, a boolean algebra (B; ′). In general, a boolean lattice can be made into an Ockham algebra in many different ways. Throughout what follows we shall assume that the Ockham algebra (L;f) is of finite boolean type, in the sense that L is a finite boolean lattice and f is a dual automorphism. Then (L;f) necessarily belongs to the Berman class Kp,o for some p. If L ≃ 2k then, by [1, Chapter 4], the dual space (X;g) is such that X is discretely ordered with |X| = k, and g is a permutation on X such that g2p = idx. We shall denote by X1,... , Xm the orbits of g. For each i we choose and fix a representative xi ε. Xi. Defining ci = |Xi|, for each i, we therefore have Xi = {xi,g(xi),g2(xi),...,g ci-1(xi)}. Consider the set Λ(X;g) consisting of those mappings v:X→X that commute with g. By duality [2] we know that (Λ(X;g), °) is a semigroup that is (anti-)isomorphic to the semigroup End((L;f), °) of Ockham endomorphisms on L. By considering Λ(X;g) we can therefore obtain properties of End(L;f). Our principal objective is to determine precisely when this semigroup is regular. For this purpose, we begin by observing the following results.

AB - If (L;f) is an Ockham algebra with dual space (X;g), then it is known that the semigroup of Ockham endomorphisms on L is (anti-)isomorphic to the semigroup Λ(X; g) of continuous order-preserving mappings on X that commute with g. Here we consider the case where L is a finite boolean lattice and f is a bijection. We begin by determining the size of Λ(X;g), and obtain necessary and sufficient conditions for this semigroup to be regular or orthodox. We also describe its structure when it is a group, or an inverse semigroup that is not a group. In the former case it is a cartesian product of cyclic groups and in the latter a cartesian product of cyclic groups each with a zero adjoined. An Ockham algebra (L;f) is a bounded distributive lattice L on which there is defined a dual endomorphism f. For the basic properties of Ockham algebras we refer the reader to [1]. The most obvious example of an Ockham algebra is, of course, a boolean algebra (B; ′). In general, a boolean lattice can be made into an Ockham algebra in many different ways. Throughout what follows we shall assume that the Ockham algebra (L;f) is of finite boolean type, in the sense that L is a finite boolean lattice and f is a dual automorphism. Then (L;f) necessarily belongs to the Berman class Kp,o for some p. If L ≃ 2k then, by [1, Chapter 4], the dual space (X;g) is such that X is discretely ordered with |X| = k, and g is a permutation on X such that g2p = idx. We shall denote by X1,... , Xm the orbits of g. For each i we choose and fix a representative xi ε. Xi. Defining ci = |Xi|, for each i, we therefore have Xi = {xi,g(xi),g2(xi),...,g ci-1(xi)}. Consider the set Λ(X;g) consisting of those mappings v:X→X that commute with g. By duality [2] we know that (Λ(X;g), °) is a semigroup that is (anti-)isomorphic to the semigroup End((L;f), °) of Ockham endomorphisms on L. By considering Λ(X;g) we can therefore obtain properties of End(L;f). Our principal objective is to determine precisely when this semigroup is regular. For this purpose, we begin by observing the following results.

UR - http://www.scopus.com/inward/record.url?scp=0031495004&partnerID=8YFLogxK

U2 - 10.1017/S0017089500031967

DO - 10.1017/S0017089500031967

M3 - Article

VL - 39

SP - 99

EP - 110

JO - Glasgow Mathematical Journal

JF - Glasgow Mathematical Journal

SN - 0017-0895

IS - 1

ER -