Electrospun Polycaprolactone Membranes Expanded with Chitosan Granules for Cell Infiltration

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

The small pore size of electrospun membranes prevents their use as three-dimensional scaffolds. In this work, we produced polycaprolactone (PCL) electrospun fibrous membranes with expanded pores by incorporating chitosan (CS) granules into the PCL solution. Scanning electron microscopy images confirmed the presence of the CS granules embedded in the PCL fibers, creating an open structure. Tensile testing results showed that the addition of CS decreased both Young’s modulus and the yield stress, but co-electrospun membranes (PCL fibers blended with CS-containing PCL fibers) exhibited higher values compared to single electrospun membranes (CS-containing PCL fibers). Human fibroblasts adhered to and proliferated on all scaffolds. Nuclear staining revealed that cells populated the entire scaffold when CS granules were present, while in PCL membranes, cells were mostly limited to the surface due to the small pore size. Overall, our findings demonstrate that electrospun membranes containing CS granules have sufficiently large pores to facilitate fibroblast infiltration without compromising the mechanical stability of the structure.
Original languageEnglish
Article number527
Number of pages14
JournalPolymers
Volume16
Issue number4
DOIs
Publication statusPublished - 15 Feb 2024

Keywords

  • cell infiltration
  • chitosan
  • electrospinning
  • polycaprolactone
  • pores

Fingerprint

Dive into the research topics of 'Electrospun Polycaprolactone Membranes Expanded with Chitosan Granules for Cell Infiltration'. Together they form a unique fingerprint.

Cite this