Electronic Detection and Quantification of ions in solution using an a-Si:H Field-effect Device

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Progress in microelectronics and semiconductor technology has enable new capabilities in the field of sensor construction, particularly of pH sensors based on field-effect transistors (FETs) as transducers of chemical signal. While crystalline devices present a higher sensitivity, their amorphous counterpart present a much lower fabrication cost, thus enabling the production of cheap disposable sensors for use in the food industry. Interest in biosensors consisting of a semiconductor transducer and a functionalized surface with biomolecule receptors (BioFET) continues to grow as they hold the promise for highly selective, label-free, real-time sensing as an alternative to conventional optical detection techniques. We have been involved in the development of a biosensor where the enzymatic activity of recombinant amidase from Escherichia coli is coupled to a semiconductor transducer for the detection of toxic amides in food and industrial effluents. The devices were fabricated on glass substrates by the PECVD technique in the top gate configuration, where the metallic gate is replaced by an electrolytic solution with an immersed Ag/AgCl reference electrode. Silicon nitride is used as gate dielectric enhancing the sensitivity and passivation layer used to avoid leakage and electrochemical reactions. In this article we report on the semiconductor unit, showing that the sensor displays the desired current-voltage characteristics. In addition we present an electrical model of the device, in agreement with the experimental data, that is sensitive to the pH of the solution.
Original languageUnknown
Title of host publication-
Pages-
DOIs
Publication statusPublished - 1 Jan 2009
Event2009 MRS Spring Meeting -
Duration: 1 Jan 2009 → …

Conference

Conference2009 MRS Spring Meeting
Period1/01/09 → …

Cite this