TY - JOUR
T1 - Dynamical modelling of constrained flexible systems using a modal Udwadia-Kalaba formulation
T2 - application to musical Instruments
AU - Debut, Vincent
AU - Antunes, José Manuel Vieira
N1 - info:eu-repo/grantAgreement/FCT/5876/147236/PT#
info:eu-repo/grantAgreement/FCT/5876/147236/PT#
UID/EAT/00472/2013
EAT/00472/2013
PY - 2017/2/8
Y1 - 2017/2/8
N2 - Most musical instruments consist of dynamical subsystems connected at a number of constraining points through which energy flows. For physical sound synthesis, one important difficulty deals with enforcing these coupling constraints. While standard techniques include the use of Lagrange multipliers or penalty methods, in this paper, a different approach is explored, the Udwadia-Kalaba (U-K) formulation, which is rooted on analytical dynamics but avoids the use of Lagrange multipliers. This general and elegant formulation has been nearly exclusively used for conceptual systems of discrete masses or articulated rigid bodies, namely, in robotics. However its natural extension to deal with continuous flexible systems is surprisingly absent from the literature. Here, such a modeling strategy is developed and the potential of combining the U-K equation for constrained systems with the modal description is shown, in particular, to simulate musical instru- ments. Objectives are twofold: (1) Develop the U-K equation for constrained flexible systems with subsystems modelled through unconstrained modes; and (2) apply this framework to compute string/body coupled dynamics. This example complements previous work [Debut, Antunes, Marques, and Carvalho, Appl. Acoust. 108, 3–18 (2016)] on guitar modeling using penalty meth- ods. Simulations show that the proposed technique provides similar results with a significant improvement in computational efficiency. VC 2017 Acoustical Society of America.
AB - Most musical instruments consist of dynamical subsystems connected at a number of constraining points through which energy flows. For physical sound synthesis, one important difficulty deals with enforcing these coupling constraints. While standard techniques include the use of Lagrange multipliers or penalty methods, in this paper, a different approach is explored, the Udwadia-Kalaba (U-K) formulation, which is rooted on analytical dynamics but avoids the use of Lagrange multipliers. This general and elegant formulation has been nearly exclusively used for conceptual systems of discrete masses or articulated rigid bodies, namely, in robotics. However its natural extension to deal with continuous flexible systems is surprisingly absent from the literature. Here, such a modeling strategy is developed and the potential of combining the U-K equation for constrained systems with the modal description is shown, in particular, to simulate musical instru- ments. Objectives are twofold: (1) Develop the U-K equation for constrained flexible systems with subsystems modelled through unconstrained modes; and (2) apply this framework to compute string/body coupled dynamics. This example complements previous work [Debut, Antunes, Marques, and Carvalho, Appl. Acoust. 108, 3–18 (2016)] on guitar modeling using penalty meth- ods. Simulations show that the proposed technique provides similar results with a significant improvement in computational efficiency. VC 2017 Acoustical Society of America.
U2 - 10.1121/1.4973534
DO - 10.1121/1.4973534
M3 - Article
SN - 0001-4966
VL - 141
SP - 764
EP - 778
JO - Journal of the Acoustical Society of America
JF - Journal of the Acoustical Society of America
IS - 2
ER -