TY - JOUR
T1 - Dye-sensitized solar cells using fluorone-based ionic liquids with improved cell efficiency
AU - Pinto, Ana L.
AU - Parola, A. Jorge
AU - Leal, João P.
AU - Coutinho, Isabel B.
AU - Pereira, Claúdia C. L.
N1 - info:eu-repo/grantAgreement/FCT/5876/147218/PT#
info:eu-repo/grantAgreement/FCT/3599-PPCDT/114236/PT#
info:eu-repo/grantAgreement/FCT/3599-PPCDT/127013/PT#
POCI-01-0145-FEDER-016387.
POCI-01-0145-FEDER-007265.
UID/QUI/50006/2019.
LISBOA-01-0145-FEDER-402-022125.
SFRH/BD/135087/2017.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Six trihexyltetradecylphosphonium chloride (P6,6,6,14Cl) based ionic liquids (IL) with dianionic fluorone derivatives were synthesized with total exchange of chloride from the dianionic dye: Fluorescein (a), Rose Bengal (b), Phloxine B (c), Eosin B (d), Eosin Y (e) and Erythrosin B (f). Spectroscopic characterization of these viscous salts indicated the presence of the expected 1 or 2 strong absorption bands. A total of 12 compounds, as sodium (from a to f) or as trihexyltetradecylphosphonium dianion salts (from a′ to f′), were used for sensitization of nanocrystalline TiO2. Here, we report the sensitization activity of these metal free dyes in terms of current-potential curve, open-circuit potential, fill factor, and overall solar energy conversion efficiency which have been evaluated under 100 mW cm-2 light intensity. We developed a strategy to improve the light harvesting of these conventional dyes by simple cationic exchange which was accompanied by a minimum of 30% increase in the cell photovoltaic conversion efficiency. Also, for Eosin B the binding to TiO2 apparently allows reduction of the-NO2 electron-withdrawing group to-NO22-. This provides a new interaction between the reduced nitro group and the TiO2 surface, reflecting an improvement in the overall DSSC performance reaching its maximum of 0.65% efficiency after light DSSC soaking. Factors that improve DSSC performance like aggregate inhibition, increment of the electrode's quasi-Fermi level and slight red shift in the absorption spectra of the tested anionic dyes were achieved by simple cationic exchange.
AB - Six trihexyltetradecylphosphonium chloride (P6,6,6,14Cl) based ionic liquids (IL) with dianionic fluorone derivatives were synthesized with total exchange of chloride from the dianionic dye: Fluorescein (a), Rose Bengal (b), Phloxine B (c), Eosin B (d), Eosin Y (e) and Erythrosin B (f). Spectroscopic characterization of these viscous salts indicated the presence of the expected 1 or 2 strong absorption bands. A total of 12 compounds, as sodium (from a to f) or as trihexyltetradecylphosphonium dianion salts (from a′ to f′), were used for sensitization of nanocrystalline TiO2. Here, we report the sensitization activity of these metal free dyes in terms of current-potential curve, open-circuit potential, fill factor, and overall solar energy conversion efficiency which have been evaluated under 100 mW cm-2 light intensity. We developed a strategy to improve the light harvesting of these conventional dyes by simple cationic exchange which was accompanied by a minimum of 30% increase in the cell photovoltaic conversion efficiency. Also, for Eosin B the binding to TiO2 apparently allows reduction of the-NO2 electron-withdrawing group to-NO22-. This provides a new interaction between the reduced nitro group and the TiO2 surface, reflecting an improvement in the overall DSSC performance reaching its maximum of 0.65% efficiency after light DSSC soaking. Factors that improve DSSC performance like aggregate inhibition, increment of the electrode's quasi-Fermi level and slight red shift in the absorption spectra of the tested anionic dyes were achieved by simple cationic exchange.
UR - http://www.scopus.com/inward/record.url?scp=85075341825&partnerID=8YFLogxK
U2 - 10.1039/c9se00783k
DO - 10.1039/c9se00783k
M3 - Article
AN - SCOPUS:85075341825
VL - 3
SP - 3510
EP - 3517
JO - Sustainable Energy and Fuels
JF - Sustainable Energy and Fuels
IS - 12
ER -