TY - JOUR
T1 - Distributed Latency-Energy Minimization and interference avoidance in TDMA Wireless Sensor Networks
AU - DEE Group Author
AU - Macedo, Mário José Monteiro de
PY - 2009/1/1
Y1 - 2009/1/1
N2 - This paper presents Latency-Energy Minimization Medium Access (LEMMA), a new TDMA-based MAC protocol for Wireless Sensor Networks (WSNs), specially suited to extend the lifetime of networks supporting alarm-driven, delay-sensitive applications characterized by convergecast traffic patterns and sporadic traffic generation. Its cascading time-slot assignment scheme conciliates low end-to-end latency with a low duty-cycle, while supporting multi-sink WSN topologies. Unlike most of the current solutions, LEMMA’s time-slot allocation protocol makes decisions based on the interference actually experienced by the nodes, instead of following the simple but potentially ineffective n-hop approach. Simulation results are presented to demonstrate the ineffectiveness of the n-hop time-slot allocation in comparison with LEMMA, as well as to evaluate the performance of LEMMA against L-MAC, T-MAC and Low Power Listening. The results show that under the target scenario conditions, LEMMA presents lower interference between assigned time-slots and lower end-to-end latency, while matching its best contender in terms of energy-efficiency.
AB - This paper presents Latency-Energy Minimization Medium Access (LEMMA), a new TDMA-based MAC protocol for Wireless Sensor Networks (WSNs), specially suited to extend the lifetime of networks supporting alarm-driven, delay-sensitive applications characterized by convergecast traffic patterns and sporadic traffic generation. Its cascading time-slot assignment scheme conciliates low end-to-end latency with a low duty-cycle, while supporting multi-sink WSN topologies. Unlike most of the current solutions, LEMMA’s time-slot allocation protocol makes decisions based on the interference actually experienced by the nodes, instead of following the simple but potentially ineffective n-hop approach. Simulation results are presented to demonstrate the ineffectiveness of the n-hop time-slot allocation in comparison with LEMMA, as well as to evaluate the performance of LEMMA against L-MAC, T-MAC and Low Power Listening. The results show that under the target scenario conditions, LEMMA presents lower interference between assigned time-slots and lower end-to-end latency, while matching its best contender in terms of energy-efficiency.
U2 - 10.1016/j.comnet.2008.10.015
DO - 10.1016/j.comnet.2008.10.015
M3 - Article
SN - 1389-1286
VL - 53
SP - 569
EP - 582
JO - Computer Networks
JF - Computer Networks
IS - 5
ER -