Abstract
A new dye-decolorizing peroxidase (DyP) was discovered through a data mining workflow based on HMMER software and profile Hidden Markov Model (HMM) using a dataset of 1200 genomes originated from a Actinobacteria strain collection isolated from Trondheim fjord. Instead of the conserved GXXDG motif known for Dyp-type peroxidases, the enzyme contains a new conserved motif EXXDG which has been not reported before. The enzyme can oxidize an anthraquinone dye Remazol Brilliant Blue R (Reactive Blue 19) and other phenolic compounds such as ferulic acid, sinapic acid, caffeic acid, 3-methylcatechol, dopamine hydrochloride, and tannic acid. The acidic pH optimum (3 to 4) and the low temperature optimum (25 °C) were confirmed using both biochemical and electrochemical assays. Kinetic and thermodynamic parameters associated with the catalytic redox center were attained by electrochemistry.
Original language | English |
---|---|
Article number | 111651 |
Journal | Journal of Inorganic Biochemistry |
Volume | 226 |
DOIs | |
Publication status | Published - Jan 2022 |
Keywords
- Actinobacteria
- Catalysis
- Data mining
- Dye-decolorizing peroxidase
- Electrochemistry
- Profile hidden Markov model