Dinuclear Zinc(II) Macrocyclic Complex as Receptor for Selective Fluorescence Sensing of Pyrophosphate

Lígia M. Mesquita, Vânia André, Catarina V. Esteves, Tiago Palmeira, Mário N. Berberan-Santos, Pedro Mateus, Rita Delgado

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)


A new diethylenetriamine-derived macrocycle known as L, bearing 2-methylquinoline arms and containing m-xylyl spacers, was prepared in good yield by a one-pot [2 + 2] Schiff base condensation procedure, followed by reduction with sodium borohydride. Up to now this is the first hexaazamacrocycle with appended fluorophore units. Single-crystal X-ray diffraction determination of the dinuclear zinc(II) complex of L showed that metal centers are located at about 7.20(2) Å from one another. This complex exhibits only weak fluorescence in aqueous solution, but the addition of 1 equiv of pyrophosphate (PPi) caused a 21-fold enhancement of the fluorescence intensity. The sensor response is linear up to a value of 10 μM HPPi3- and has a detection limit of 300 nM. The receptor behaves as a highly selective sensor for pyrophosphate as other anions, including phosphate, phenylphosphate (PhP), adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP), failed to induce any fluorescence change and practically do not affect the fluorescence intensity of the sensor in the presence of HPPi3-. Competition titrations carried out in aqueous solution at pH 7.4 [in 20 mM 3-(N-morpholino)propanesulfonic acid (MOPS) buffer] by spectrofluorometry revealed a high association constant value of 6.22 log units for binding of PPi by the dinuclear zinc(II) receptor, one of the highest reported values for colorimetric/fluorometric sensors able to work under real aqueous physiological conditions, while association constant values for binding of the other phosphorylated substrates are in the 5.51-4.03 log unit range.

Original languageEnglish
Pages (from-to)2212-2219
Number of pages8
JournalInorganic Chemistry
Issue number5
Publication statusPublished - 7 Mar 2016


Dive into the research topics of 'Dinuclear Zinc(II) Macrocyclic Complex as Receptor for Selective Fluorescence Sensing of Pyrophosphate'. Together they form a unique fingerprint.

Cite this