Abstract
We report on measurements of the Kβ diagram, valence-to-core (VtC), and hypersatellite X-ray spectra induced in metallic Cr by photon single and double K-shell ionization. The experiment was carried out at the Stanford Synchrotron Radiation Lightsource using the seven-crystal Johann-type hard X-ray spectrometer of the beamline 6-2. For the Kβ diagram and VtC transitions, the present study confirms the line shape features observed in previous works, whereas the K h β hypersatellite transition was found to exhibit a complex spectral line shape and a characteristic low-energy shoulder. The energy shift of the hypersatellite relative to the parent diagram line was deduced from the measurements and compared with the result of extensive multiconfiguration Dirac–Fock (MCDF) calculations. A very good agreement between experiment and theory was found. The MCDF calculations were also used to compute the theoretical line shape of the hypersatellite. A satisfactory agreement was obtained between the overall shapes of the experimental and theoretical spectra, but deviations were observed on the low- and high-energy flanks of the hypersatellite line. The discrepancies were explained by chemical effects, which were not considered in the MCDF calculations performed for isolated atoms.
Original language | English |
---|---|
Pages (from-to) | 351-359 |
Journal | X-Ray Spectrometry |
Volume | 48 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Jan 2019 |