TY - JOUR
T1 - Development of a new bread type supplemented iron and folic acid- Chemical and technological characterization
AU - Antunes, Patricia
AU - Lidon, Fernando Cebola
AU - Pais, Isabel
AU - Silva, Maria Manuela
AU - Ramalho, José Cochicho
AU - Scotti-Campos, Paula
AU - Bagulho, Ana Sofia
AU - Moreira, José
AU - Simões, Maria Manuela
AU - Pessoa, Maria Fernanda
AU - Reboredo, Fernando Henrique
N1 - info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00239%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04035%2F2020/PT#
PY - 2020
Y1 - 2020
N2 - Bread is a staple food prepared by baking a dough of flour and water. The virtually infinite combinations of different flours and differing proportions of ingredients has resulted in the wide variety of types, shapes, sizes, and textures available around the world. Considering the worldwide consume of this staple food, this study aimed to develop and assess the chemical and technological characteristics of a new biofortified blend, containing wheat, locust bean flours, iron and folic acid (applied in the form of powder or microcapsules), for the production of bread with nutritional and prophylactic characteristics for human health. Besides bread wheat properties for baking, locust wheat flours was added to the blend in a small amount (0.5%) to increase water absorbance through its polar amino groups of proteins, whereas folic acid and iron inclusion considered the human needs on a daily basis. An 85.89- and 3.93-fold increases for folic acid and iron was carried out through fortification. It was found that, relatively to wheat flour T65, the contents of some minerals (Ca, K, Si), fatty acids (C16:0, C16:1, C18:0, C18:1; C20:1) and sugars (raffinose, sucrose, glucose and fructose) were significantly higher in locust bean flour. Upon blends iron and folic acid fortification, toughness, deformation work / gluten strength and the elasticity index prevailed when powder was used, whereas minimum values were obtained for ash, toughness and gluten strength in the standard blend. Moreover, significant differences were not found for fatty acids. In bread biofortified with folic and iron in the form of powder, all fatty acids (excepting C18:2 and C18:3) prevailed, but lower values were found for sugars and total soluble solids. Moreover, breads height, weight, specific volume remained higher in standard bread, but upon application of benzoic acid or methyl 4-hydroxybenzoate lower shelf life values were found. Although from a hedonic perspective, consumers preferred the standard bread, the biofortified blend revealed a high-quality index suitable for development of a functional staple food incorporating iron and folic acid (in the form of powder or microcapsules). Nevertheless, folic acid as proved to be highly labile during baking, but incorporation of microcapsules slightly limited this degradation. Considering the shelf life of the biofortified bread, pulverization with methyl p-hydroxybenzoate seemed to be the most effective additive.
AB - Bread is a staple food prepared by baking a dough of flour and water. The virtually infinite combinations of different flours and differing proportions of ingredients has resulted in the wide variety of types, shapes, sizes, and textures available around the world. Considering the worldwide consume of this staple food, this study aimed to develop and assess the chemical and technological characteristics of a new biofortified blend, containing wheat, locust bean flours, iron and folic acid (applied in the form of powder or microcapsules), for the production of bread with nutritional and prophylactic characteristics for human health. Besides bread wheat properties for baking, locust wheat flours was added to the blend in a small amount (0.5%) to increase water absorbance through its polar amino groups of proteins, whereas folic acid and iron inclusion considered the human needs on a daily basis. An 85.89- and 3.93-fold increases for folic acid and iron was carried out through fortification. It was found that, relatively to wheat flour T65, the contents of some minerals (Ca, K, Si), fatty acids (C16:0, C16:1, C18:0, C18:1; C20:1) and sugars (raffinose, sucrose, glucose and fructose) were significantly higher in locust bean flour. Upon blends iron and folic acid fortification, toughness, deformation work / gluten strength and the elasticity index prevailed when powder was used, whereas minimum values were obtained for ash, toughness and gluten strength in the standard blend. Moreover, significant differences were not found for fatty acids. In bread biofortified with folic and iron in the form of powder, all fatty acids (excepting C18:2 and C18:3) prevailed, but lower values were found for sugars and total soluble solids. Moreover, breads height, weight, specific volume remained higher in standard bread, but upon application of benzoic acid or methyl 4-hydroxybenzoate lower shelf life values were found. Although from a hedonic perspective, consumers preferred the standard bread, the biofortified blend revealed a high-quality index suitable for development of a functional staple food incorporating iron and folic acid (in the form of powder or microcapsules). Nevertheless, folic acid as proved to be highly labile during baking, but incorporation of microcapsules slightly limited this degradation. Considering the shelf life of the biofortified bread, pulverization with methyl p-hydroxybenzoate seemed to be the most effective additive.
KW - Bread fortification
KW - Bread wheat flour
KW - Folic acid
KW - Iron
KW - Locust bean flour
UR - http://www.scopus.com/inward/record.url?scp=85102344523&partnerID=8YFLogxK
U2 - 10.9755/ejfa.2020.v32.i12.2217
DO - 10.9755/ejfa.2020.v32.i12.2217
M3 - Article
AN - SCOPUS:85102344523
SN - 2079-052X
VL - 32
SP - 846
EP - 856
JO - Emirates Journal of Food and Agriculture
JF - Emirates Journal of Food and Agriculture
IS - 12
ER -