Determining solubility for finitely generated groups of pl homeomorphisms

Collin Bleak, Tara Brough, Susan Hermiller

Research output: Contribution to journalArticlepeer-review

Abstract

The set of finitely generated subgroups of the group PL+(I) of orientation-preserving piecewise-linear homeomorphisms of the unit interval includes many important groups, most notably R. Thompson's group F. Here, we show that every finitely generated subgroup G < PL+(I) is either soluble, or contains an embedded copy of the finitely generated, non-soluble Brin-Navas group B, affirming a conjecture of the first author from 2009. In the case that G is soluble, we show the derived length of G is bounded above by the number of breakpoints of any finite set of generators. We specify a set of 'computable' subgroups of PL+(I) (which includes R. Thompson's group F) and give an algorithm which determines whether or not a given finite subset X of such a computable group generates a soluble group. When the group is soluble, the algorithm also determines the derived length of (X). Finally, we give a solution of the membership problem for a particular family of finitely generated soluble subgroups of any computable subgroup of PL+(I).

Original languageEnglish
Pages (from-to)6815-6837
Number of pages23
JournalTransactions of the American Mathematical Society
Volume374
Issue number10
DOIs
Publication statusPublished - Oct 2021

Keywords

  • Membership problem
  • Piecewise linear homeomorphism
  • Soluble
  • Thompson's group

Fingerprint

Dive into the research topics of 'Determining solubility for finitely generated groups of pl homeomorphisms'. Together they form a unique fingerprint.

Cite this