Determination of the strong coupling constant αs from transverse energy–energy correlations in multijet events at √s=8TeV using the ATLAS detector

ATLAS Collaboration

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Measurements of transverse energy–energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to s=8TeV proton–proton collisions with an integrated luminosity of 20.2fb-1. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of αs(μ) predicted in QCD up to scales over 1TeV. A global fit to the transverse energy–energy correlation distributions yields αs(mZ)=0.1162±0.0011(exp.)-0.0070+0.0084(theo.), while a global fit to the asymmetry distributions yields a value of αs(mZ)=0.1196±0.0013(exp.)-0.0045+0.0075(theo.).

Original languageEnglish
Article number872
JournalEuropean Physical Journal C
Volume77
Issue number12
DOIs
Publication statusPublished - 1 Dec 2017

Fingerprint

quantum chromodynamics
asymmetry
Detectors
detectors
Bins
transverse momentum
Luminance
Momentum
luminosity
scalars
collisions
Testing
predictions
simulation
energy
Uncertainty
Monte Carlo simulation

Cite this

@article{10f4141e5dda447d9c4a10ead010022f,
title = "Determination of the strong coupling constant αs from transverse energy–energy correlations in multijet events at √s=8TeV using the ATLAS detector",
abstract = "Measurements of transverse energy–energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to s=8TeV proton–proton collisions with an integrated luminosity of 20.2fb-1. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of αs(μ) predicted in QCD up to scales over 1TeV. A global fit to the transverse energy–energy correlation distributions yields αs(mZ)=0.1162±0.0011(exp.)-0.0070+0.0084(theo.), while a global fit to the asymmetry distributions yields a value of αs(mZ)=0.1196±0.0013(exp.)-0.0045+0.0075(theo.).",
author = "{ATLAS Collaboration} and M. Aaboud and G. Aad and B. Abbott and J. Abdallah and O. Abdinov and B. Abeloos and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and R. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adamczyk and J. Adelman and M. Adersberger and T. Adye and Affolder, {A. A.} and T. Agatonovic-Jovin and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and Ahlen, {S. P.} and F. Ahmadov and G. Aielli and S. Akatsuka and H. Akerstedt and {\AA}kesson, {T. P.A.} and E. Akilli and Akimov, {A. V.} and Batista, {S. J.} and J. Carvalho and Costa, {M. J.} and C. Garc{\'i}a and A. Gomes and Grillo, {A. A.} and P. Jackson and Leite, {M. A.L.} and H. Liu and M. Melo and R. Pedro and Rossi, {L. P.} and H. Santos and Seixas, {J. M.} and S. Shrestha and J. Silva and A. Ventura and Wilson, {J. A.}",
note = "We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NLT1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [87].",
year = "2017",
month = "12",
day = "1",
doi = "10.1140/epjc/s10052-017-5442-0",
language = "English",
volume = "77",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer Science Business Media",
number = "12",

}

TY - JOUR

T1 - Determination of the strong coupling constant αs from transverse energy–energy correlations in multijet events at √s=8TeV using the ATLAS detector

AU - ATLAS Collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abdallah, J.

AU - Abdinov, O.

AU - Abeloos, B.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abreu, R.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adamczyk, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adye, T.

AU - Affolder, A. A.

AU - Agatonovic-Jovin, T.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahlen, S. P.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akatsuka, S.

AU - Akerstedt, H.

AU - Åkesson, T. P.A.

AU - Akilli, E.

AU - Akimov, A. V.

AU - Batista, S. J.

AU - Carvalho, J.

AU - Costa, M. J.

AU - García, C.

AU - Gomes, A.

AU - Grillo, A. A.

AU - Jackson, P.

AU - Leite, M. A.L.

AU - Liu, H.

AU - Melo, M.

AU - Pedro, R.

AU - Rossi, L. P.

AU - Santos, H.

AU - Seixas, J. M.

AU - Shrestha, S.

AU - Silva, J.

AU - Ventura, A.

AU - Wilson, J. A.

N1 - We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NLT1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [87].

PY - 2017/12/1

Y1 - 2017/12/1

N2 - Measurements of transverse energy–energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to s=8TeV proton–proton collisions with an integrated luminosity of 20.2fb-1. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of αs(μ) predicted in QCD up to scales over 1TeV. A global fit to the transverse energy–energy correlation distributions yields αs(mZ)=0.1162±0.0011(exp.)-0.0070+0.0084(theo.), while a global fit to the asymmetry distributions yields a value of αs(mZ)=0.1196±0.0013(exp.)-0.0045+0.0075(theo.).

AB - Measurements of transverse energy–energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to s=8TeV proton–proton collisions with an integrated luminosity of 20.2fb-1. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of αs(μ) predicted in QCD up to scales over 1TeV. A global fit to the transverse energy–energy correlation distributions yields αs(mZ)=0.1162±0.0011(exp.)-0.0070+0.0084(theo.), while a global fit to the asymmetry distributions yields a value of αs(mZ)=0.1196±0.0013(exp.)-0.0045+0.0075(theo.).

UR - http://www.scopus.com/inward/record.url?scp=85038354668&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-017-5442-0

DO - 10.1140/epjc/s10052-017-5442-0

M3 - Article

VL - 77

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 12

M1 - 872

ER -