Abstract
Let \(X\) be a separable Banach function space on the unit circle \(\T\) and let \(H[X]\) be the abstract Hardy space built upon \(X\). We show that the set of analytic polynomials is dense in \(H[X]\) if the Hardy\polishendash Littlewood maximal operator is bounded on the associate space \(X'\). This result is specified to the case of variable Lebesgue spaces.
Original language | English |
---|---|
Pages (from-to) | 131-141 |
Journal | Commentationes Mathematicae |
Volume | 57 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- Banach function space
- Rearrangement-invariant space
- Variable Lebesgue space
- Abstract Hardy space
- Analytic polynomial
- Fejér kernel