TY - JOUR
T1 - Dendritic Cells: A Spot on Sialic Acid
AU - Crespo, Hélio
AU - Lau, Joseph T Y
AU - Videira, Paula A
N1 - info:eu-repo/grantAgreement/FCT/3599-PPCDT/67561/PT
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F61204%2F2009/PT#
This work was supported by the Portuguese Foundation for Science and Technology (FCT) - PTDC/SAU-MII/67561/2006 and CEDOC (Paula A. Videira) and SFRH/BD/61204/2009 (He lio J. Crespo). FCT is co-financed by European Social Fund (ESF) under Human Potential Operation Program (POPH) from National Strategic Reference Framework (NSRF).
PY - 2013/12/27
Y1 - 2013/12/27
N2 - Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host-host and host-pathogen interactions occur. The role of glycan epitopes in cell-cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their changes contribute to the overall immune response remains poorly defined. Sialic acids are unique sugars that usually occupy the terminal position of the glycan chains and may be modified by external factors, such as pathogens, or upon specific physiological cellular events. At cell surface, sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors. Dendritic cells (DCs) preside over the transition from innate to the adaptive immune repertoires, and no other cell has such relevant role in antigen screening, uptake, and its presentation to lymphocytes, ultimately triggering the adaptive immune response. Interestingly, sialic acid-modified structures are involved in all DC functions, such as antigen uptake, DC migration, and capacity to prime T cell responses. Sialic acid content changes along DC differentiation and activation and, while, not yet fully understood, these changes have important implications in DC functions. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies.
AB - Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host-host and host-pathogen interactions occur. The role of glycan epitopes in cell-cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their changes contribute to the overall immune response remains poorly defined. Sialic acids are unique sugars that usually occupy the terminal position of the glycan chains and may be modified by external factors, such as pathogens, or upon specific physiological cellular events. At cell surface, sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors. Dendritic cells (DCs) preside over the transition from innate to the adaptive immune repertoires, and no other cell has such relevant role in antigen screening, uptake, and its presentation to lymphocytes, ultimately triggering the adaptive immune response. Interestingly, sialic acid-modified structures are involved in all DC functions, such as antigen uptake, DC migration, and capacity to prime T cell responses. Sialic acid content changes along DC differentiation and activation and, while, not yet fully understood, these changes have important implications in DC functions. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies.
KW - sialylation
KW - sialic acid
KW - host-pathogen interaction
KW - lectins
KW - dendritic cell
KW - dendritic cell
KW - sialic acid
KW - sialylation
KW - lectins
KW - host-pathogen interaction
U2 - 10.3389/fimmu.2013.00491
DO - 10.3389/fimmu.2013.00491
M3 - Article
C2 - 24409183
SN - 1664-3224
VL - 4
SP - Online
JO - Frontiers in Immunology
JF - Frontiers in Immunology
IS - NA
ER -