TY - JOUR
T1 - Defect-Engineered Ca-TiO2 Nanomaterials for Enhanced Adsorption and Photocatalytic Degradation of Water Pollutants on Sustainable Cellulose Membranes
AU - Matias, Maria Leonor
AU - Gaspar, Diana
AU - Carvalho, David
AU - Pimentel, Ana
AU - Pereira, Luís
AU - Machado, Ana S.Reis
AU - Rodrigues, Joana
AU - Monteiro, Teresa
AU - Gouveia, José D.
AU - Carvalho, Patrícia
AU - Deuermeier, Jonas
AU - Martins, Rodrigo
AU - Fortunato, Elvira
AU - Nunes, Daniela
N1 - info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F50025%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F50025%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F04138%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F04138%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F00645%2F2020/PT#
info:eu-repo/grantAgreement/EC/H2020/787410/EU#
info:eu-repo/grantAgreement/FCT//UI%2FBD%2F151292%2F2021/PT#
info:eu-repo/grantAgreement/FCT/CEEC IND5ed/2022.00010.CEECIND%2FCP1720%2FCT0023/PT#
info:eu-repo/grantAgreement/FCT/Concurso de Projetos IC&DT em Todos os Domínios Científicos/PTDC%2FEQU-EPQ%2F2195%2F2021/PT#
info:eu-repo/grantAgreement/EC/H2020/952169/EU#
info:eu-repo/grantAgreement/EC/H2020/101008701/EU#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F50011%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F50011%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0006%2F2020/PT#
info:eu-repo/grantAgreement/FCT/CEEC IND6ed/2023.06511.CEECIND%2FCP2840%2FCT0001/PT#
Funding Information:
National Funds from FCT \u2013 Funda\u00E7\u00E3o para a Ci\u00EAncia e a Tecnologia, I.P., supported this work through the project LA/0037/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication\u2010i3N. J. Rodrigues acknowledges FCT for Program Stimulus of Scientific Employment\u2013Individual Support CEECINSTLA/00005/2022 and 2023.00054.RESTART. J. Deuermeier also thanks FCT for the FCT Scientific Employment Stimulus \u2013 Institutional Call (CEECINST/00102/2018) contract. The authors were thankful to the Sustainable Stone project by Portugal \u2013 Valorization of Natural Stone for a digital, sustainable, and qualified future, numbered 40, proposal number C644943391\u201000000051, which was co\u2010financed by the PRR \u2013 Recovery and Resilience Plan of the European Union (Next Generation EU).
Publisher Copyright:
© 2025 Wiley-VCH GmbH.
PY - 2025
Y1 - 2025
N2 - A defect engineering strategy is employed to produce defective calcium-doped TiO2 nanomaterials (Ca:TiO2), which are subsequently incorporated into cellulose-based membranes. Structural defects, including vacancies, stacking faults, grain boundaries and voids emerged from the interplay between calcium doping and microwave irradiation. The 10 mol.% Ca:TiO2 membrane achieves an 81% degradation rate and an adsorption capacity of ≈25.8 mg g−1, showcasing excellent photocatalytic and adsorption performance. The enhanced performance is attributed to the high surface area of Ca:TiO2 agglomerates, the presence of oxygen vacancies, structural defects and the abundance of surface hydroxyl groups. X-ray Photoelectron Spectroscopy (XPS) revealed that the Fermi level of the 10 mol.% Ca:TiO2 nanomaterial is positioned near the conduction band edge, indicating a significant modification of its electronic properties, with high electrical conductivity at room temperature (RT). Density Functional Theory (DFT) calculations provided a deeper insight into the impact of calcium doping, revealing that calcium (Ca) incorporation promotes the formation of oxygen vacancies, introducing additional electronic states near the bottom of the conduction band, thereby enhancing the material's electrical conductivity. By integrating eco-friendly materials and defect-engineered nanomaterials doped with earth-abundant elements, this work aligns with sustainability principles, fostering the development of next-generation adsorptive and photocatalytic membranes.
AB - A defect engineering strategy is employed to produce defective calcium-doped TiO2 nanomaterials (Ca:TiO2), which are subsequently incorporated into cellulose-based membranes. Structural defects, including vacancies, stacking faults, grain boundaries and voids emerged from the interplay between calcium doping and microwave irradiation. The 10 mol.% Ca:TiO2 membrane achieves an 81% degradation rate and an adsorption capacity of ≈25.8 mg g−1, showcasing excellent photocatalytic and adsorption performance. The enhanced performance is attributed to the high surface area of Ca:TiO2 agglomerates, the presence of oxygen vacancies, structural defects and the abundance of surface hydroxyl groups. X-ray Photoelectron Spectroscopy (XPS) revealed that the Fermi level of the 10 mol.% Ca:TiO2 nanomaterial is positioned near the conduction band edge, indicating a significant modification of its electronic properties, with high electrical conductivity at room temperature (RT). Density Functional Theory (DFT) calculations provided a deeper insight into the impact of calcium doping, revealing that calcium (Ca) incorporation promotes the formation of oxygen vacancies, introducing additional electronic states near the bottom of the conduction band, thereby enhancing the material's electrical conductivity. By integrating eco-friendly materials and defect-engineered nanomaterials doped with earth-abundant elements, this work aligns with sustainability principles, fostering the development of next-generation adsorptive and photocatalytic membranes.
KW - antibiotics removal
KW - cellulose-based membranes
KW - environmental remediation
KW - structural defects engineering
KW - sustainability
UR - http://www.scopus.com/inward/record.url?scp=105012460790&partnerID=8YFLogxK
U2 - 10.1002/adsu.202500675
DO - 10.1002/adsu.202500675
M3 - Article
AN - SCOPUS:105012460790
SN - 2366-7486
JO - ADVANCED SUSTAINABLE SYSTEMS
JF - ADVANCED SUSTAINABLE SYSTEMS
M1 - e00675
ER -