56 Citations (Scopus)

Abstract

Additive manufacturing has revolutionized the manufacturing paradigm in recent years due to the possibility of creating complex shaped three-dimensional parts which can be difficult or impossible to obtain by conventional manufacturing processes. Among the different additive manufacturing techniques, wire and arc additive manufacturing (WAAM) is suitable to produce large metallic parts owing to the high deposition rates achieved, which are significantly larger than powder-bed techniques, for example. The interest in WAAM is steadily increasing, and consequently, significant research efforts are underway. This review paper aims to provide an overview of the most significant achievements inWAAM, highlighting process developments and variants to control the microstructure, mechanical properties, and defect generation in the as-built parts; the most relevant engineering materials used; the main deposition strategies adopted to minimize residual stresses and the effect of post-processing heat treatments to improve the mechanical properties of the parts. An important aspect that still hinders this technology is certification and nondestructive testing of the parts, and this is discussed. Finally, a general perspective of future advancements is presented.

Original languageEnglish
Article number1121
JournalMaterials
Volume12
Issue number7
DOIs
Publication statusPublished - 1 Jan 2019

Keywords

  • Additive manufacturing
  • Applications
  • Mechanical properties
  • Microstructure
  • Wire and arc additive manufacturing

Fingerprint Dive into the research topics of 'Current status and perspectives on wire and arc additive manufacturing (WAAM)'. Together they form a unique fingerprint.

Cite this