Current interactions mitigation in 3-phase PFC modular rectifier through differential-mode choke filter boost converter

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

In this paper, a new way to mitigate the current interactions is proposed. The problem of current interactions arises when a modular three-phase (3-phase) rectifier (three single-phase modules) with boost converter for power factor correction (PFC) is used. A new differential-mode choke filter is implemented in the developed boost converter. The choke here is a specially made differential inductor in the input of the boost converter that eliminates the known current interactions. To prove the new concept, a study of the level of mitigation of the current interactions is presented. The control is operated in continuous driving mode (CCM), and the popular UC3854B circuit was used for this. The rectifier proposal is validated through a set of simulations performed on the PSIM 12.0 platform, as well as the construction of a prototype. With the results obtained, it is confirmed that the differential-mode choke filter eliminates the current interactions. It is observed that at the input of the rectifier, a sinusoidal alternating current with a low level of harmonic distortion is consumed from the grid. The sinusoidal shape of the phase current proves that a better power factor capable of meeting the international standards is obtained, and that the circuit in its initial version is operational. This proven result promises a good PFC operation, to guarantee the better quality of the electrical energy, being able to be applied in systems that require a high PFC, e.g., in battery charging, wind systems, or in aeronautics and spacecrafts.

Original languageEnglish
Article number1684
Pages (from-to)1-19
Number of pages19
JournalApplied Sciences (Switzerland)
Volume11
Issue number4
DOIs
Publication statusPublished - 13 Feb 2021

Keywords

  • Aeronautics and spacecrafts
  • Boost converter
  • Differential-mode choke filter
  • Interactions
  • Three-phase rectifier
  • Wind energy

Fingerprint

Dive into the research topics of 'Current interactions mitigation in 3-phase PFC modular rectifier through differential-mode choke filter boost converter'. Together they form a unique fingerprint.

Cite this