Abstract
Corrole macrocycles are very appealing dyes for incorporation into light harvesting devices. This work shows the sensorial ability of 5,10,15-tris(pentafluorophenyl)corrole 1 and its monoanionic species toward Na2+, Ca2+, Cu2+, Cd2+, Pb2+, Hg2+, Ag+, and Al3+ metal ions in toluene and acetonitrile. The photophysical studies toward metal ions were carried out by absorption and emission spectroscopy. From all metal ions studied, corrole 1 shows to be colorimetric for Hg2+ allowing a naked eye detection of Hg2+ through a change of color from purple to blue in acetonitrile and from green to yellow in toluene. In addition a new beta-imine corrole 4 was successful synthesized and further functionalized with 3-isocyanatopropyl-trimethoxysilane resulting in an alkoxysilane derivative 5. The grafting of alkoxysilane derivative 5 with optically transparent silica nanoparticles (SiNPs) was achieved succesfully. The new-coated silica nanoparticles with corrole 5 were studied in the presence of Cu2+, Hg2+ and Ag2+ as metal ion probes. Interestingly, upon addition of Ag+, groups of satellite AgNPs were formed around the SiNPs and were checked by transmission electron microscopy (TEM). At same time, a change of color from green to yellow was observed.
Original language | Unknown |
---|---|
Pages (from-to) | 8564-8572 |
Journal | Inorganic Chemistry |
Volume | 52 |
Issue number | 15 |
DOIs | |
Publication status | Published - 1 Jan 2013 |