TY - JOUR
T1 - Controlling individuals growth in semantic genetic programming through elitist replacement
AU - Castelli, Mauro
AU - Vanneschi, Leonardo
AU - Popovič, Aleš
N1 - Castelli, M., Vanneschi, L., & Popovič, A. (2016). Controlling individuals growth in semantic genetic programming through elitist replacement. Computational Intelligence And Neuroscience, 2016, [8326760]. https://doi.org/10.1155/2016/8326760
PY - 2016
Y1 - 2016
N2 - In 2012, Moraglio and coauthors introduced new genetic operators for Genetic Programming, called geometric semantic genetic operators. They have the very interesting advantage of inducing a unimodal error surface for any supervised learning problem. At the same time, they have the important drawback of generating very large data models that are usually very hard to understand and interpret. The objective of this work is to alleviate this drawback, still maintaining the advantage. More in particular, we propose an elitist version of geometric semantic operators, in which offspring are accepted in the new population only if they have better fitness than their parents. We present experimental evidence, on five complex real-life test problems, that this simple idea allows us to obtain results of a comparable quality (in terms of fitness), but with much smaller data models, compared to the standard geometric semantic operators. In the final part of the paper, we also explain the reason why we consider this a significant improvement, showing that the proposed elitist operators generate manageable models, while the models generated by the standard operators are so large in size that they can be considered unmanageable.
AB - In 2012, Moraglio and coauthors introduced new genetic operators for Genetic Programming, called geometric semantic genetic operators. They have the very interesting advantage of inducing a unimodal error surface for any supervised learning problem. At the same time, they have the important drawback of generating very large data models that are usually very hard to understand and interpret. The objective of this work is to alleviate this drawback, still maintaining the advantage. More in particular, we propose an elitist version of geometric semantic operators, in which offspring are accepted in the new population only if they have better fitness than their parents. We present experimental evidence, on five complex real-life test problems, that this simple idea allows us to obtain results of a comparable quality (in terms of fitness), but with much smaller data models, compared to the standard geometric semantic operators. In the final part of the paper, we also explain the reason why we consider this a significant improvement, showing that the proposed elitist operators generate manageable models, while the models generated by the standard operators are so large in size that they can be considered unmanageable.
UR - http://www.scopus.com/inward/record.url?scp=84956955701&partnerID=8YFLogxK
U2 - 10.1155/2016/8326760
DO - 10.1155/2016/8326760
M3 - Article
AN - SCOPUS:84956955701
VL - 2016
JO - Computational Intelligence And Neuroscience
JF - Computational Intelligence And Neuroscience
SN - 1687-5265
M1 - 8326760
ER -