TY - JOUR
T1 - Combined Organic Photovoltaic Cells and Ultra Low Power CMOS Circuit for Indoor Light Energy Harvesting
AU - Batista, Duarte
AU - Oliveira, Luis Bica
AU - Paulino, Nuno
AU - Carvalho, Carlos
AU - Oliveira, João P.
AU - Farinhas, Joana
AU - Charas, Ana
AU - Dos Santos, Pedro Mendonça
N1 - This work is funded by FCT/MEC through national funds and when applicable co-funded by FEDER-PT2020 partnership agreement under the project UID/EEA/50008/2019, PEst-OE UID/EEA/00066/2019, and foRESTER PCIF/SSI/0102/2017.
PY - 2019/4/15
Y1 - 2019/4/15
N2 - This paper describes an energy harvesting system composed of an organic photovoltaic cell (OPV) connected to a DC-DC converter, designed in a 130 nm Complementary Metal-Oxide-Semiconductor (CMOS) technology, with a quasi- maximum power point tracking (MPPT) algorithm to maximize the system efficiency, for indoor applications. OPVs are an emerging technology with potential for low cost indoor light energy harvesting. The OPV current-voltage curves (I-V) under an irradiance of solar simulator Oriel Sol 3A, at room temperature, are obtained and an accurate electrical model is derived. The energy harvesting system is subjected to four different indoor light sources: 35 W halogen, 3.5 W LED, 5 W LED, and 7 W LED, positioned at three different heights (0.45 m, 0.26 m, and 0.11 m), to evaluate the potential of the system for indoor applications. The measurements showed maximum efficiencies of 60% for 35 W halogen and 45% for 7 W LED at the highest distance (0.45 m) and between 60% (5 W LED) and 70% (35 W halogen), at the shorter distance (0.11 m). Under irradiation, the integrated CMOS circuit presented a maximum efficiency of 75.76%, which is, to the best of the authors' knowledge, the best reported power management unit (PMU) energy system using organic photovoltaic cells.
AB - This paper describes an energy harvesting system composed of an organic photovoltaic cell (OPV) connected to a DC-DC converter, designed in a 130 nm Complementary Metal-Oxide-Semiconductor (CMOS) technology, with a quasi- maximum power point tracking (MPPT) algorithm to maximize the system efficiency, for indoor applications. OPVs are an emerging technology with potential for low cost indoor light energy harvesting. The OPV current-voltage curves (I-V) under an irradiance of solar simulator Oriel Sol 3A, at room temperature, are obtained and an accurate electrical model is derived. The energy harvesting system is subjected to four different indoor light sources: 35 W halogen, 3.5 W LED, 5 W LED, and 7 W LED, positioned at three different heights (0.45 m, 0.26 m, and 0.11 m), to evaluate the potential of the system for indoor applications. The measurements showed maximum efficiencies of 60% for 35 W halogen and 45% for 7 W LED at the highest distance (0.45 m) and between 60% (5 W LED) and 70% (35 W halogen), at the shorter distance (0.11 m). Under irradiation, the integrated CMOS circuit presented a maximum efficiency of 75.76%, which is, to the best of the authors' knowledge, the best reported power management unit (PMU) energy system using organic photovoltaic cells.
KW - CMOS technology
KW - indoor light harvesting
KW - Integrated circuit
KW - organic photovoltaic cells
UR - http://www.scopus.com/inward/record.url?scp=85064979916&partnerID=8YFLogxK
U2 - 10.3390/s19081803
DO - 10.3390/s19081803
M3 - Article
C2 - 30991740
AN - SCOPUS:85064979916
SN - 1424-8220
VL - 19
JO - Sensors
JF - Sensors
IS - 8
M1 - 1803
ER -