Combined Organic Photovoltaic Cells and Ultra Low Power CMOS Circuit for Indoor Light Energy Harvesting

Duarte Batista, Luis Bica Oliveira, Nuno Paulino, Carlos Carvalho, João P. Oliveira, Joana Farinhas, Ana Charas, Pedro Mendonça Dos Santos

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
52 Downloads (Pure)


This paper describes an energy harvesting system composed of an organic photovoltaic cell (OPV) connected to a DC-DC converter, designed in a 130 nm Complementary Metal-Oxide-Semiconductor (CMOS) technology, with a quasi- maximum power point tracking (MPPT) algorithm to maximize the system efficiency, for indoor applications. OPVs are an emerging technology with potential for low cost indoor light energy harvesting. The OPV current-voltage curves (I-V) under an irradiance of solar simulator Oriel Sol 3A, at room temperature, are obtained and an accurate electrical model is derived. The energy harvesting system is subjected to four different indoor light sources: 35 W halogen, 3.5 W LED, 5 W LED, and 7 W LED, positioned at three different heights (0.45 m, 0.26 m, and 0.11 m), to evaluate the potential of the system for indoor applications. The measurements showed maximum efficiencies of 60% for 35 W halogen and 45% for 7 W LED at the highest distance (0.45 m) and between 60% (5 W LED) and 70% (35 W halogen), at the shorter distance (0.11 m). Under irradiation, the integrated CMOS circuit presented a maximum efficiency of 75.76%, which is, to the best of the authors' knowledge, the best reported power management unit (PMU) energy system using organic photovoltaic cells.

Original languageEnglish
Article number1803
Issue number8
Publication statusPublished - 15 Apr 2019


  • CMOS technology
  • indoor light harvesting
  • Integrated circuit
  • organic photovoltaic cells


Dive into the research topics of 'Combined Organic Photovoltaic Cells and Ultra Low Power CMOS Circuit for Indoor Light Energy Harvesting'. Together they form a unique fingerprint.

Cite this