TY - JOUR
T1 - Click-Derived Triazoles and Triazolylidenes of Manganese for Electrocatalytic Reduction of CO2
AU - Friães, Sofia
AU - Realista, Sara
AU - Gomes, Clara S. B.
AU - Martinho, Paulo N.
AU - Royo, Beatriz
N1 - 022162, CEECIND/00509/2017, PTDC/QUI-QIN/28151/2017, RECI/BBB-BEP/0124/2012, SFRH/BD/131955/2017, UIDB/00100/2020, UIDB/04378/2020, UIDB/04612/2020, UIDP/00100/2020, UIDP/04046/2020, UIDP/04378/2020, UIDP/50006/2020, UIPD/04612/2020
Funding Information:
This research was funded by FUNDA??O DE CI?NCIA E TECNOLOGIA, FCT, grant numbers: PTDC/QUI-QIN/28151/2017, SFRH/BD/131955/2017, CEECIND/00509/2017. The MOSTMICRO-ITQB was funded by UIDB/04612/2020 and UIPD/04612/2020. The NMR spectrome-ters at CERMAX were funded by 022162. LAQV and UCIBIO were funded by UIDB/50006/2020, UIDP/50006/2020, UIDB/04378/2020, and UIDP/04378/2020. The X-ray infrastructure was funded by RECI/BBB-BEP/0124/2012. The BioISI was funded by UIDB/04046/2020, UIDP/04046/2020, UIDB/00100/2020, and UIDP/00100/2020. We thank C. Almeida for elemental analysis at ITQB laboratories.
Funding Information:
Funding: This research was funded by FUNDAÇÃO DE CIÊNCIA E TECNOLOGIA, FCT, grant numbers: PTDC/QUI-QIN/28151/2017, SFRH/BD/131955/2017, CEECIND/00509/2017. The MOSTMICRO-ITQB was funded by UIDB/04612/2020 and UIPD/04612/2020. The NMR spectrometers at CERMAX were funded by 022162. LAQV and UCIBIO were funded by UIDB/50006/2020, UIDP/50006/2020, UIDB/04378/2020, and UIDP/04378/2020. The X-ray infrastructure was funded by RECI/BBB-BEP/0124/2012. The BioISI was funded by UIDB/04046/2020, UIDP/04046/2020, UIDB/00100/2020, and UIDP/00100/2020.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/11/1
Y1 - 2021/11/1
N2 - A series of new fac-[Mn(L)(CO)3 Br] complexes where L is a bidentate chelating ligand containing mixed mesoionic triazolylidene-pyridine (MICˆpy, 1), triazolylidene-triazole (MICˆtrz, 2), and triazole-pyridine (trzˆpy, 3) ligands have been prepared and fully characterized, including the single crystal X-ray diffraction studies of 1 and 2. The abilities of 1–3 and complex fac-[Mn(MICˆMIC)(CO)3 Br] (4) to catalyze the electroreduction of CO2 has been assessed for the first time. It was found that all complexes displayed a current increase under CO2 atmosphere, being 3 and 4 the most active complexes. Complex 3, bearing a NˆN-based ligand exhibited a good efficiency and an excellent selectivity for reducing CO2 to CO in the presence of 1.0 M of water, at low overpotential. Interestingly, complex 4 containing the strongly electron donating di-imidazolylidene ligand exhibited comparable activity to 3, when the experiments were performed in neat acetonitrile at slightly higher overpotential (−1.86 vs. −2.14 V).
AB - A series of new fac-[Mn(L)(CO)3 Br] complexes where L is a bidentate chelating ligand containing mixed mesoionic triazolylidene-pyridine (MICˆpy, 1), triazolylidene-triazole (MICˆtrz, 2), and triazole-pyridine (trzˆpy, 3) ligands have been prepared and fully characterized, including the single crystal X-ray diffraction studies of 1 and 2. The abilities of 1–3 and complex fac-[Mn(MICˆMIC)(CO)3 Br] (4) to catalyze the electroreduction of CO2 has been assessed for the first time. It was found that all complexes displayed a current increase under CO2 atmosphere, being 3 and 4 the most active complexes. Complex 3, bearing a NˆN-based ligand exhibited a good efficiency and an excellent selectivity for reducing CO2 to CO in the presence of 1.0 M of water, at low overpotential. Interestingly, complex 4 containing the strongly electron donating di-imidazolylidene ligand exhibited comparable activity to 3, when the experiments were performed in neat acetonitrile at slightly higher overpotential (−1.86 vs. −2.14 V).
KW - Electrocatalytic CO reduction
KW - Manganese
KW - Mesoionic carbenes
UR - https://doi.org/10.3390/molecules26216325
UR - http://www.scopus.com/inward/record.url?scp=85118578600&partnerID=8YFLogxK
U2 - 10.3390/molecules26216325
DO - 10.3390/molecules26216325
M3 - Article
C2 - 34770734
VL - 26
JO - Molecules
JF - Molecules
IS - 21
M1 - 6325
ER -