TY - JOUR
T1 - Circulating low-molecular-weight (poly)phenol metabolites in the brain
T2 - unveiling in vitro and in vivo blood-brain barrier transport
AU - Carecho, Rafael
AU - Marques, Daniela
AU - Carregosa, Diogo
AU - Masuero, Domenico
AU - Garcia-Aloy, Mar
AU - Tramer, Federica
AU - Passamonti, Sabina
AU - Vrhovsek, Urska
AU - Ventura, M. Rita
AU - Brito, Maria Alexandra
AU - Nunes dos Santos, Cláudia
AU - Figueira, Inês
PY - 2024/7/5
Y1 - 2024/7/5
N2 - Circulating metabolites resulting from colonic metabolism of dietary (poly)phenols are highly abundant in the bloodstream, though still marginally explored, particularly concerning their brain accessibility. Our goal is to disclose (poly)phenol metabolites’ blood-brain barrier (BBB) transport, in vivo and in vitro, as well as their role at BBB level. For three selected metabolites, benzene-1,2-diol-3-sulfate/benzene-1,3-diol-2-sulfate (pyrogallol-sulfate - Pyr-sulf), benzene-1,3-diol-6-sulfate (phloroglucinol-sulfate - Phlo-sulf), and phenol-3-sulfate (resorcinol-sulfate - Res-sulf), BBB transport was assessed in human brain microvascular endothelial cells (HBMEC). Their potential in modulating in vitro BBB properties at circulating concentrations was also studied. Metabolites’ fate towards the brain, liver, kidney, urine, and blood was disclosed in Wistar rats upon injection. Transport kinetics in HBMEC highlighted different BBB permeability rates, where Pyr-sulf emerged as the most in vitro BBB permeable metabolite. Pyr-sulf was also the most potent regarding BBB properties improvement, namely increased beta(β)-catenin membrane expression and reduction of zonula occludens-1 membrane gaps. Whereas no differences were observed for transferrin, increased expression of caveolin-1 upon Pyr-sulf and Res-sulf treatments was found. Pyr-sulf was also capable of modulating gene and protein expression of some solute carrier transporters. Notably, each of the injected metabolites exhibited a unique tissue distribution in vivo, with the remarkable ability to almost immediately reach the brain.
AB - Circulating metabolites resulting from colonic metabolism of dietary (poly)phenols are highly abundant in the bloodstream, though still marginally explored, particularly concerning their brain accessibility. Our goal is to disclose (poly)phenol metabolites’ blood-brain barrier (BBB) transport, in vivo and in vitro, as well as their role at BBB level. For three selected metabolites, benzene-1,2-diol-3-sulfate/benzene-1,3-diol-2-sulfate (pyrogallol-sulfate - Pyr-sulf), benzene-1,3-diol-6-sulfate (phloroglucinol-sulfate - Phlo-sulf), and phenol-3-sulfate (resorcinol-sulfate - Res-sulf), BBB transport was assessed in human brain microvascular endothelial cells (HBMEC). Their potential in modulating in vitro BBB properties at circulating concentrations was also studied. Metabolites’ fate towards the brain, liver, kidney, urine, and blood was disclosed in Wistar rats upon injection. Transport kinetics in HBMEC highlighted different BBB permeability rates, where Pyr-sulf emerged as the most in vitro BBB permeable metabolite. Pyr-sulf was also the most potent regarding BBB properties improvement, namely increased beta(β)-catenin membrane expression and reduction of zonula occludens-1 membrane gaps. Whereas no differences were observed for transferrin, increased expression of caveolin-1 upon Pyr-sulf and Res-sulf treatments was found. Pyr-sulf was also capable of modulating gene and protein expression of some solute carrier transporters. Notably, each of the injected metabolites exhibited a unique tissue distribution in vivo, with the remarkable ability to almost immediately reach the brain.
UR - http://www.scopus.com/inward/record.url?scp=85198098853&partnerID=8YFLogxK
U2 - 10.1039/d4fo01396d
DO - 10.1039/d4fo01396d
M3 - Article
AN - SCOPUS:85198098853
SN - 2042-6496
VL - 15
SP - 7812
EP - 7827
JO - Food and Function
JF - Food and Function
IS - 15
ER -