TY - JOUR
T1 - Chitosan derivatives as nanocarriers for hLDHA inhibitors delivery to hepatic cells
T2 - A selective strategy for targeting primary hyperoxaluria diseases
AU - Salido, S.
AU - Alejo-Armijo, A.
AU - Parola, A. J.
AU - Sebastián, V.
AU - Alejo, T.
AU - Irusta, S.
AU - Arruebo, M.
AU - Altarejos, J.
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50006%2F2020/PT#
Authors wish to thank the Centro de Instrumentación Científico-Técnica (CICT) of the University of Jaén, Spain, for partial financial support. A.A.-A. is grateful for the postdoctoral fellowship from Fundación Alfonso Martín Escudero. Authors acknowledge the use of the National Facility ELECMI ICTS, node “Laboratorio de Microscopias Avanzadas” at Universidad de Zaragoza. This research has also partially been supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (grant RTI2018-098560-B-C22) and by the Andalusian Consejería de Economía y Conocimiento (FEDER program 2014-2020: grant number 1380682).
Publisher Copyright:
© 2022 The Author(s)
PY - 2022/11/5
Y1 - 2022/11/5
N2 - Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism that result in an excess of oxalate production by the oxidation of glyoxylate by the human lactate dehydrogenase A enzyme (hLDHA). The selective liver inhibition of this enzyme is one of the therapeutic strategies followed in the treatment of this disease. Even though several efforts have been recently performed using gene silencing by the RNA interference approach, small-molecule inhibitors that selectively reach hepatocytes are preferred since they present the advantages of a lower production cost and better pharmacological properties. In that sense, the design, synthesis, and physicochemical characterization by NMR, FTIR, DLS and TEM of two nanocarriers based on chitosan conjugates (1, non-redox-sensitive; 2, redox-sensitive) have been performed to (i) achieve the selective transport of hLDHA inhibitors into hepatocytes and (ii) their disruption once they reach the hepatocytes cytosol. Polymer 2 self-assembled into micelles in water and showed high drug loadings (19.8–24.5 %) and encapsulation efficiencies (31.9–40.8%) for the hLDHA inhibitors (I-III) tested. The non-redox-sensitive micelle 1 remained stable under different glutathione (GSH) concentrations (10 μM and 10 mM), and just a residual release of the inhibitor encapsulated was observed (less than 10 %). On the other hand, micelle 2 was sufficiently stable under in vitro physiological conditions (10 μM, GSH) but it quickly disassembled under the simulated reducing conditions present inside hepatocytes (10 mM GSH), achieving a 60 % release of the hLDHA inhibitor encapsulated after 24 h, confirming the responsiveness of the developed carrier to the high levels of intracellular GSH.
AB - Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism that result in an excess of oxalate production by the oxidation of glyoxylate by the human lactate dehydrogenase A enzyme (hLDHA). The selective liver inhibition of this enzyme is one of the therapeutic strategies followed in the treatment of this disease. Even though several efforts have been recently performed using gene silencing by the RNA interference approach, small-molecule inhibitors that selectively reach hepatocytes are preferred since they present the advantages of a lower production cost and better pharmacological properties. In that sense, the design, synthesis, and physicochemical characterization by NMR, FTIR, DLS and TEM of two nanocarriers based on chitosan conjugates (1, non-redox-sensitive; 2, redox-sensitive) have been performed to (i) achieve the selective transport of hLDHA inhibitors into hepatocytes and (ii) their disruption once they reach the hepatocytes cytosol. Polymer 2 self-assembled into micelles in water and showed high drug loadings (19.8–24.5 %) and encapsulation efficiencies (31.9–40.8%) for the hLDHA inhibitors (I-III) tested. The non-redox-sensitive micelle 1 remained stable under different glutathione (GSH) concentrations (10 μM and 10 mM), and just a residual release of the inhibitor encapsulated was observed (less than 10 %). On the other hand, micelle 2 was sufficiently stable under in vitro physiological conditions (10 μM, GSH) but it quickly disassembled under the simulated reducing conditions present inside hepatocytes (10 mM GSH), achieving a 60 % release of the hLDHA inhibitor encapsulated after 24 h, confirming the responsiveness of the developed carrier to the high levels of intracellular GSH.
KW - Chitosan
KW - Hepatocytes drug delivery
KW - hLDHA inhibitors
KW - Polymeric micelles
KW - Primary hyperoxaluria
KW - Redox-sensitive
UR - http://www.scopus.com/inward/record.url?scp=85139344636&partnerID=8YFLogxK
U2 - 10.1016/j.ijpharm.2022.122224
DO - 10.1016/j.ijpharm.2022.122224
M3 - Article
C2 - 36181922
AN - SCOPUS:85139344636
SN - 0378-5173
VL - 627
JO - International Journal of Pharmaceutics
JF - International Journal of Pharmaceutics
M1 - 122224
ER -