Abstract
In the present work, the proton-transfer reactions of the methylpyranomalvidin-3-O-glucoside pigment in water with different pH values was studied by NMR and UV-visible spectroscopies. The results showed four equilibrium forms: the methylpyranomalvidin-3-O-glucoside cation, the neutral quinoidal base, the respective anionic quinoidal base, and a dianionic base unprotonated at the methyl group. According to the NMR data, it seems that for methylpyranomalvidin-3-O-glucoside besides the acid base equilibrium between the pyranoflavylium cation and the neutral quinoidal base, a new species is formed at pD 4.88-6.10. This is corroborated by the appearance of a new set of signals in the NMR spectrum that may be assigned to the formation of hemiketal/cis-chalcone species to a small extent. The two ionization constants (pK(a1) and pK(a2)) obtained by both methods (NMR and UV-visible) for methylpyranomalvidin-3-O-glucoside are in agreement (pK(a1) = 5.17 +/- 0.03; pK(a2) = 8.85 +/- 0.08; and pK(a1) = 4.57 +/- 0.07; pK(a2) = 8.23 +/- 0.04 obtained by NMR and UV-visible spectroscopies, respectively). Moreover, the fully dianionic unprotonated form (at the methyl group) of the methylpyranomalvidin-3-O-glucoside is converted slowly into a new structure that displays a yellow color at basic pH. On the basis of the results obtained through LC-MS and NMR, the proposed structure was found to correspond to the flavonol syringetin-3-glucoside.
Original language | English |
---|---|
Pages (from-to) | 1538-1545 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry B |
Volume | 115 |
Issue number | 6 |
DOIs | |
Publication status | Published - 17 Feb 2011 |