Characterisation of Zea mays L. plastidial transglutaminase: interactions with thylakoid membrane proteins

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


Chloroplast transglutaminase (chlTGase) activity is considered to play a significant role in response to a light stimulus and photo-adaptation of plants, but its precise function in the chloroplast is unclear. The characterisation, at the proteomic level, of the chlTGase interaction with thylakoid proteins and demonstration of its association with photosystem II (PSII) protein complexes was accomplished with experiments using maize thylakoid protein extracts. By means of a specific antibody designed against the C-terminal sequence of the maize TGase gene product, different chlTGase forms were immunodetected in thylakoid membrane extracts from three different stages of maize chloroplast differentiation. These bands co-localised with those of lhcb 1, 2 and 3 antenna proteins. The most significant, a 58 kDa form present in mature chloroplasts, was characterised using biochemical and proteomic approaches. Sequential fractionation of thylakoid proteins from light-induced mature chloroplasts showed that the 58 kDa form was associated with the thylakoid membrane, behaving as a soluble or peripheral membrane protein. Two-dimensional gel electrophoresis discriminated, for the first time, the 58-kDa band in two different forms, probably corresponding to the two different TGase cDNAs previously cloned. Electrophoretic separation of thylakoid proteins in native gels, followed by LC-MS mass spectrometry identification of protein complexes indicated that maize chlTGase forms part of a specific PSII protein complex, which includes LHCII, ATPase and pSbS proteins. The results are discussed in relation to the interaction between these proteins and the suggested role of the enzyme in thylakoid membrane organisation and photoprotection.
Original languageUnknown
Pages (from-to)708-716
JournalPlant Biology
Issue number5
Publication statusPublished - 1 Jan 2010

Cite this