Abstract
Cellular Automata rules often produce spatial patterns which make them recognizable by human observers. Nevertheless, it is generally difficult, if not impossible, to identify the characteristic(s) that make a rule produce a particular pattern. Discovering rules that produce spatial patterns that a human being would find "similar" to another given pattern is a very important task, given its numerous possible applications in many complex systems models. In this paper, we propose a general framework to accomplish this task, based on a combination of Machine Learning strategies including Genetic Algorithms and Artificial Neural Networks. This framework is tested on a 3-values, 6-neighbors, k-totalistic cellular automata rule called the "burning paper" rule. Results are encouraging and should pave the way for the use of our framework in real-life complex systems models.
Original language | Unknown |
---|---|
Pages (from-to) | 171-181 |
Journal | Journal Of Cellular Automata |
Volume | 4 |
Issue number | 3 |
Publication status | Published - 1 Jan 2009 |