TY - JOUR
T1 - Cell bank origin of mdck parental cells shapes adaptation to serum-free suspension culture and canine adenoviral vector production
AU - Rodrigues, Ana Filipa de Albuquerque Ferreira
AU - Fernandes, Paulo
AU - Laske, Tanja
AU - Castro, Rute
AU - Alves, Paula Marques
AU - Genzel, Yvonne
AU - Coroadinha, Ana Sofia
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Phenotypic variation in cultured mammalian cell lines is known to be induced by passaging and culture conditions. Yet, the effect these variations have on the production of viral vectors has been overlooked. In this work we evaluated the impact of using Madin–Darby canine kidney (MDCK) parental cells from American Type Culture Collection (ATCC) or European Collection of Authenticated Cell Cultures (ECACC) cell bank repositories in both adherent and suspension cultures for the production of canine adenoviral vectors type 2 (CAV-2). To further explore the differences between cells, we conducted whole-genome transcriptome analysis. ECACC’s MDCK showed to be a less heterogeneous population, more difficult to adapt to suspension and serum-free culture conditions, but more permissive to CAV-2 replication progression, enabling higher yields. Transcriptome data indicated that this increased permissiveness is due to a general down-regulation of biological networks of innate immunity in ECACC cells, including apoptosis and death receptor signaling, Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling, toll-like receptors signaling and the canonical pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. These results show the impact of MDCK source on the outcome of viral-based production processes further elucidating transcriptome signatures underlying enhanced adenoviral replication. Following functional validation, the genes and networks identified herein can be targeted in future engineering approaches aiming at improving the production of CAV-2 gene therapy vectors.
AB - Phenotypic variation in cultured mammalian cell lines is known to be induced by passaging and culture conditions. Yet, the effect these variations have on the production of viral vectors has been overlooked. In this work we evaluated the impact of using Madin–Darby canine kidney (MDCK) parental cells from American Type Culture Collection (ATCC) or European Collection of Authenticated Cell Cultures (ECACC) cell bank repositories in both adherent and suspension cultures for the production of canine adenoviral vectors type 2 (CAV-2). To further explore the differences between cells, we conducted whole-genome transcriptome analysis. ECACC’s MDCK showed to be a less heterogeneous population, more difficult to adapt to suspension and serum-free culture conditions, but more permissive to CAV-2 replication progression, enabling higher yields. Transcriptome data indicated that this increased permissiveness is due to a general down-regulation of biological networks of innate immunity in ECACC cells, including apoptosis and death receptor signaling, Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling, toll-like receptors signaling and the canonical pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. These results show the impact of MDCK source on the outcome of viral-based production processes further elucidating transcriptome signatures underlying enhanced adenoviral replication. Following functional validation, the genes and networks identified herein can be targeted in future engineering approaches aiming at improving the production of CAV-2 gene therapy vectors.
KW - Canine adenoviral vectors
KW - Cell bank repository
KW - Gene therapy
KW - Influenza virus
KW - Innate immunity
KW - MDCK cells
KW - Serum-free suspension culture
KW - Transcriptomics
UR - http://www.scopus.com/inward/record.url?scp=85090023593&partnerID=8YFLogxK
U2 - 10.3390/ijms21176111
DO - 10.3390/ijms21176111
M3 - Article
C2 - 32854295
AN - SCOPUS:85090023593
SN - 1661-6596
VL - 21
SP - 1
EP - 27
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 17
M1 - 6111
ER -