TY - GEN
T1 - Carbon monoxide targeting mitochondria
AU - Queiroga, Cláudia S.F.
AU - Almeida, Ana Sofia
AU - Vieira, Helena Luisa
PY - 2012/1/1
Y1 - 2012/1/1
N2 - MITOCHONDRIA PRESENT TWO KEY ROLES ON CELLULAR FUNCTIONING: (i) cell metabolism, being the main cellular source of energy and (ii) modulation of cell death, by mitochondrial membrane permeabilization. Carbon monoxide (CO) is an endogenously produced gaseoustransmitter, which presents several biological functions and is involved in maintaining cell homeostasis and cytoprotection. Herein, mitochondrion is approached as the main cellular target of carbon monoxide (CO). In this paper, two main perspectives concerning CO modulation of mitochondrial functioning are evaluated. First, the role of CO on cellular metabolism, in particular oxidative phosphorylation, is discussed, namely, on: cytochrome c oxidase activity, mitochondrial respiration, oxygen consumption, mitochondrial biogenesis, and general cellular energetic status. Second, the mitochondrial pathways involved in cell death inhibition by CO are assessed, in particular the control of mitochondrial membrane permeabilization.
AB - MITOCHONDRIA PRESENT TWO KEY ROLES ON CELLULAR FUNCTIONING: (i) cell metabolism, being the main cellular source of energy and (ii) modulation of cell death, by mitochondrial membrane permeabilization. Carbon monoxide (CO) is an endogenously produced gaseoustransmitter, which presents several biological functions and is involved in maintaining cell homeostasis and cytoprotection. Herein, mitochondrion is approached as the main cellular target of carbon monoxide (CO). In this paper, two main perspectives concerning CO modulation of mitochondrial functioning are evaluated. First, the role of CO on cellular metabolism, in particular oxidative phosphorylation, is discussed, namely, on: cytochrome c oxidase activity, mitochondrial respiration, oxygen consumption, mitochondrial biogenesis, and general cellular energetic status. Second, the mitochondrial pathways involved in cell death inhibition by CO are assessed, in particular the control of mitochondrial membrane permeabilization.
U2 - 10.1155/2012/749845
DO - 10.1155/2012/749845
M3 - Other contribution
C2 - 22536507
VL - 2012
T3 - Biochemistry research international
ER -