Candida oceani sp nov., a novel yeast isolated from a Mid-Atlantic Ridge hydrothermal vent (-2300 meters)

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)


A novel species in the genus Candida was obtained from deep-sea hydrothermal fields on the Mid-Atlantic Ridge. Strains Mo39, MARY089 and CBS 5307, respectively, isolated from an unidentified deep-sea coral collected near Rainbow hydrothermal vent, from water samples near Menez Gwen hydrothermal field and from the stomach of a marine fish are considered as a novel taxon. Sequence similarities in the D1/D2 region of the 26S rRNA gene indicated that strains Mo39, MARY089 and CBS 5307 have for closest neighbors Candida spencermartinsiae, Candida taylorii, Candida atmosphaerica and Candida atlantica. The strains, respectively, differ from C. spencermartinsiae, C. taylorii, C. atmosphaerica andCandida atlantica by 4, 4.3, 4.3 and 4.7% in the D1/D2 domain. Strains Mo39, MARY089 and CBS 5307 were differentiated from others by differences in the ability to assimilate d-Gluconate and in the ability to grow at relatively high temperature. Only strain Mo39 displays an optimal growth at 3% sea salts, indicating that this strain is clearly adapted to live in marine conditions. Sequence similarities between strains Mo39, MARY089 and CBS 5307 and related species and differences in the ability to utilize specific carbon compounds revealed that these strains represent a hitherto unknown species. Sexual reproduction was not observed in strains Mo39, MARY089 and CBS 5307. An anamorphic name Candida oceani sp. nov. is proposed for the type strain Mo39(T) (= CBS 11857(T) = DSM 23777(T)) and the two other strains MARY089 and CBS 5307. To our knowledge, this is the first description of a micro-eukaryotic organism including a strain isolated from a deep-sea coral near a hydrothermal ecosystem.
Original languageUnknown
Pages (from-to)75-82
JournalAntonie Van Leeuwenhoek International Journal Of General And Molecular Micr
Issue number1
Publication statusPublished - 1 Jan 2011

Cite this