Can Diels-Alder Reactions Lead to trans-Fused Products? A Computational Study of the Competitive 4+2 and 2+4 Cycloaddition of Dienes to α-Aryl Substituted Cyclohexenones

Research output: Contribution to journalArticle

1 Citation (Scopus)


The Diels–Alder reaction is one of the most interesting pro- cesses known in organic chemistry. Its one-step nature, which allows exceptional control of the stereoselectivity of the reaction, is one of its most important characteristics. However, it is also a limitation of the process, as it prevents the formation of trans products. In spite of this, it is believed that trans products can be formed in two-step Diels–Alder reactions, and there is a classic example that illustrates this possibility. In this paper we study this system by theoretical methods and have concluded that not only the reported Diels–Alder reaction follows a one-step mechanism, but also that the trans product observed by the authors can only origi- nate by a [3,3] sigmatropic rearrangement of a previously formed Diels–Alder intermediate. The study of a model sys- tem also suggests that trans fusion in two-step Diels–Alder reactions will not happen under conventional reaction condi- tions as the transition states involved in such processes would have prohibitive activation energies. The large calculated values result from very poor stabilization of the zwitterionic intermediate when it adopts the conformation that allows the trans approach of the diene moiety to the activated dieno- phile. The analysis of the potential energy surfaces obtained by two-dimensional scans indicates that the one-step DA reaction that would lead to trans-fused products also will not occur under conventional reaction conditions.
Original languageUnknown
Pages (from-to)5171-5179
JournalEuropean Journal of Organic Chemistry
Issue number23
Publication statusPublished - 1 Jan 2013

Cite this