Can artificial neural networks be used to predict the origin of ozone episodes?

T. Fontes, L. M. Silva, M. P. Silva, Nuno Barros, A. C. Carvalho

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)


Tropospheric ozone is a secondary pollutant having a negative impact on health and environment. To control and minimize such impact the European Community established regulations to promote a clean air all over Europe. However, when an episode is related with natural mechanisms as Stratosphere-Troposphere Exchanges (STE), the benefits of an action plan to minimize precursor emissions are inefficient. Therefore, this work aims to develop a tool to identify the sources of ozone episodes in order to minimize misclassification and thus avoid the implementation of inappropriate air quality plans. For this purpose, an artificial neural network model - the Multilayer Perceptron - is used as a binary classifier of the source of an ozone episode. Long data series, between 2001 and 2010, considering the ozone precursors, 7Be activity and meteorological conditions were used. With this model, 2-7% of a mean error was achieved, which is considered as a good generalization. Accuracy measures for imbalanced data are also discussed. The MCC values show a good performance of the model (0.65-0.92). Precision and F1-measure indicate that the model specifies a little better the rare class. Thus, the results demonstrate that such a tool can be used to help authorities in the management of ozone, namely when its thresholds are exceeded due natural causes, as the above mentioned STE. Therefore, the resources used to implement an action plan to minimize ozone precursors could be better managed avoiding the implementation of inappropriate measures.

Original languageEnglish
Pages (from-to)197-207
Number of pages11
JournalThe Science of the total environment
Issue number1
Publication statusPublished - 1 Aug 2014


  • Artificial neural network
  • Classification
  • Human health
  • Ozone
  • Stratosphere
  • Troposphere


Dive into the research topics of 'Can artificial neural networks be used to predict the origin of ozone episodes?'. Together they form a unique fingerprint.

Cite this