TY - JOUR
T1 - Boosting Electrical Performance of High-κ Nanomultilayer Dielectrics and Electronic Devices by Combining Solution Combustion Synthesis and UV Irradiation
AU - Carlos, Emanuel
AU - Branquinho, Rita
AU - Kiazadeh, Asal
AU - Martins, Jorge
AU - Barquinha, Pedro
AU - Martins, Rodrigo
AU - Fortunato, Elvira
N1 - info:eu-repo/grantAgreement/FCT/5876/147333/PT#
info:eu-repo/grantAgreement/EC/H2020/685758/EU#
Grant SFRH/BPD/99136/2013
Grant SFRH/BD/122286/2016
Grant SFRH/BD/116047/2016
IDS-FunMat-INNO project FPA2016/EIT/EIT RawMaterials Grant Agreement 15015.
PY - 2017/11/22
Y1 - 2017/11/22
N2 - In the past decade, solution-based dielectric oxides have been widely studied in electronic applications enabling the use of low-cost processing technologies and device improvement. The most promising are the high-κ dielectrics, like aluminum (AlOx) and hafnium oxide (HfOx), that allow an easier trap filling in the semiconductor and the use of low operation voltage. However, in the case of HfOx, a high temperature usually is needed to induce a uniform and condensed film, which limits its applications in flexible electronics. This paper describes how to obtain HfOx dielectric thin films and the effect of their implementation in multilayer dielectrics (MLD) at low temperatures (150 °C) to apply in thin film transistors (TFTs) using the combination of solution combustion synthesis (SCS) and ultraviolet (UV) treatment. The single layers and multilayers did not show any trace of residual organics and exhibited a small surface roughness (<1.2 nm) and a high breakdown voltage (>2.7 MV·cm-1). The resulting TFTs presented a high performance at a low operation voltage (<3 V), with high saturation mobility (43.9 ± 1.1 cm2·V-1·s-1), a small subthreshold slope (0.066 ± 0.010 V·dec-1), current ratio of 1 × 106 and a good idle shelf life stability after 2 months. To our knowledge, the results achieved surpass the actual state-of-the-art. Finally, we demonstrated a low-voltage diode-connected inverter using MLD/IGZO TFTs working with a maximum gain of 1 at 2 V.
AB - In the past decade, solution-based dielectric oxides have been widely studied in electronic applications enabling the use of low-cost processing technologies and device improvement. The most promising are the high-κ dielectrics, like aluminum (AlOx) and hafnium oxide (HfOx), that allow an easier trap filling in the semiconductor and the use of low operation voltage. However, in the case of HfOx, a high temperature usually is needed to induce a uniform and condensed film, which limits its applications in flexible electronics. This paper describes how to obtain HfOx dielectric thin films and the effect of their implementation in multilayer dielectrics (MLD) at low temperatures (150 °C) to apply in thin film transistors (TFTs) using the combination of solution combustion synthesis (SCS) and ultraviolet (UV) treatment. The single layers and multilayers did not show any trace of residual organics and exhibited a small surface roughness (<1.2 nm) and a high breakdown voltage (>2.7 MV·cm-1). The resulting TFTs presented a high performance at a low operation voltage (<3 V), with high saturation mobility (43.9 ± 1.1 cm2·V-1·s-1), a small subthreshold slope (0.066 ± 0.010 V·dec-1), current ratio of 1 × 106 and a good idle shelf life stability after 2 months. To our knowledge, the results achieved surpass the actual state-of-the-art. Finally, we demonstrated a low-voltage diode-connected inverter using MLD/IGZO TFTs working with a maximum gain of 1 at 2 V.
KW - DUV irradiation
KW - low operating voltage TFTs
KW - low temperature
KW - nanomultilayer dielectric oxides (AlO and HfO)
KW - solution combustion synthesis
UR - http://www.scopus.com/inward/record.url?scp=85035075814&partnerID=8YFLogxK
U2 - 10.1021/acsami.7b11752
DO - 10.1021/acsami.7b11752
M3 - Article
C2 - 29090904
AN - SCOPUS:85035075814
SN - 1944-8244
VL - 9
SP - 40428
EP - 40437
JO - ACS Applied Materials & Interfaces
JF - ACS Applied Materials & Interfaces
IS - 46
ER -