Bioprocess integration for human mesenchymal stem cells: From up to downstream processing scale-up to cell proteome characterization

Bárbara Cunha, Tiago Aguiar, Sofia B. Carvalho, Marta M. Silva, Ricardo A. Gomes, Manuel J.T. Carrondo, Patrícia Gomes-Alves, Cristina Peixoto, Margarida Serra, Paula M. Alves

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)

Abstract

To deliver the required cell numbers and doses to therapy, scaling-up production and purification processes (at least to the liter-scale) while maintaining cells’ characteristics is compulsory. Therefore, the aim of this work was to prove scalability of an integrated streamlined bioprocess compatible with current good manufacturing practices (cGMP) comprised by cell expansion, harvesting and volume reduction unit operations using human mesenchymal stem cells (hMSC) isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). BM-MSC and AT-MSC expansion and harvesting steps were scaled-up from spinner flasks to 2 L scale stirred tank single-use bioreactor using synthetic microcarriers and xeno-free medium, ensuring high cellular volumetric productivities (50 × 106 cell L−1 day−1), expansion factors (14–16 fold) and cell recovery yields (80%). For the concentration step, flat sheet cassettes (FSC) and hollow fiber cartridges (HF) were compared showing a fairly linear scale-up, with a need to slightly decrease the permeate flux (30–50 LMH, respectively) to maximize cell recovery yield. Nonetheless, FSC allowed to recover 18% more cells after a volume reduction factor of 50. Overall, at the end of the entire bioprocess more than 65% of viable (>95%) hMSC could be recovered without compromising cell's critical quality attributes (CQA) of viability, identity and differentiation potential. Alongside the standard quality assays, a proteomics workflow based on mass spectrometry tools was established to characterize the impact of processing on hMSC's CQA; These analytical tools constitute a powerful tool to be used in process design and development.

Original languageEnglish
Pages (from-to)87-98
Number of pages12
JournalJournal of Biotechnology
Volume248
DOIs
Publication statusPublished - 20 Apr 2017

Keywords

  • Cell therapy
  • Human mesenchymal stem cells
  • Mass spectrometry
  • Process development
  • Product characterization
  • Scale-up

Fingerprint

Dive into the research topics of 'Bioprocess integration for human mesenchymal stem cells: From up to downstream processing scale-up to cell proteome characterization'. Together they form a unique fingerprint.

Cite this