Abstract
Saturation transfer difference NMR (STD-NMR) spectroscopy has emerged as a powerful screening tool and a straightforward way to study the binding epitopes of active compounds in early stage lead discovery in pharmaceutical research. Here we report the application of STD-NMR to characterize the binding of the anti-inflammatory drugs ibuprofen, diclofenac, and ketorolac to COX-1 and COX-2. Using well-studied COX inhibitors and by comparing STD signals with crystallographic structures, we show that there is a relation between the orientations of ibuprofen and diclofenac in the COX-2 active site and the relative STD responses detected in the NMR experiments. On the basis of this analysis, we propose that ketorolac should bind to the COX-2 active site in an orientation similar to that of diclofenac. We also show that the combination of STD-NMR with competition experiments constitutes a valuable tool to address the recently proposed behavior of COX-2 as functional heterodimers and complements enzyme activity studies in the effort to rationalize COX inhibition mechanisms.
Original language | English |
---|---|
Pages (from-to) | 8555-8562 |
Journal | Journal Of Medicinal Chemistry |
Volume | 54 |
Issue number | 24 |
DOIs | |
Publication status | Published - 17 Nov 2011 |