Abstract
Signal flow graphs (SFG’s) are a powerful technique to analyze switched-capacitor (SC) circuits in a way that provides in-depth information about their operation and direct access to the corresponding symbolic z-transfer functions. Due to lengthy and error-prone symbolic manipulations this is manually manageable for simple first- or second-order circuits, but becomes unpractical for manipulating higher-order circuits which can not be decomposed into first- and second-order ones. Hence, there is an important need to provide designers with a computer-aided tool for the SFG symbolic analysis of a broad class of SC filtering networks, as described in this paper. Rule-based techniques are employed to capture from arbitrary circuit schematic and timing diagrams the corresponding symbolic SFG leading to the automatic generation of the associated z-transfer function. Symbols can then be instantiated to numerical values to obtain measurable data on a variety of performance indicators such as total capacitor area and capacitance spread as well as the resulting nominal frequency response and its variability against component errors. This is illustrated considering a variety of examples of SC filtering networks including, besides the more traditional filters, both finite and infinite impulse response decimators.
Original language | English |
---|---|
Pages (from-to) | 858-867 |
Number of pages | 10 |
Journal | IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems |
Volume | 14 |
Issue number | 7 |
DOIs | |
Publication status | Published - 1 Jan 1995 |