Assessing the Potential of 1,2,3-Triazole-Dihydropyrimidinone Hybrids Against Cholinesterases: In Silico, In Vitro, and In Vivo Studies

Carlos M. Gastalho, Ana M. Sena, Óscar López, José G. Fernández-Bolaños, Alfonso T. García-Sosa, Florbela Pereira, Célia M. Antunes, Ana R. Costa, Anthony J. Burke, Elisabete P. Carreiro

Research output: Contribution to journalArticlepeer-review

7 Downloads (Pure)

Abstract

Combining the pharmacological properties of the 1,2,3-triazole and dihydropyrimidinone classes of compounds, two small families of mono- and di(1,2,3-triazole)-dihydropyrimidinone hybrids, A and B, were previously synthesized. The main objective of this work was to investigate the potential anti-Alzheimer effects of these hybrids. The inhibitory activities of cholinesterases (AChE and BuChE), antioxidant activity, and the inhibitory mechanism through in silico (molecular docking) and in solution (STD-NMR) experiments were evaluated. The 1,2,3-triazole-dihydropyrimidinone hybrids (A and B) showed moderate in vitro inhibitory activity on eqBuChE (IC50 values between 1 and 58.4 μM). The best inhibitor was the hybrid B4, featuring two 1,2,3-triazole cores, which exhibited stronger inhibition than galantamine, with an IC50 of 1 ± 0.1 μM for eqBuChE, through a mixed inhibition mechanism. Among the hybrids A, the most promising inhibitor was A1, exhibiting an IC50 of 12 ± 2 µM, similar to that of galantamine. Molecular docking and STD-NMR experiments revealed the key binding interactions of these promising inhibitors with BuChE. Hybrids A and B did not display Artemia salina toxicity below 100 μM.

Original languageEnglish
Article number11153
JournalInternational Journal of Molecular Sciences
Volume25
Issue number20
DOIs
Publication statusPublished - Oct 2024

Keywords

  • 1,2,3-triazole
  • antioxidant activity
  • cholinesterases
  • dihydropyrimidinone
  • docking
  • STD-NMR

Cite this