TY - JOUR
T1 - Assessing the Impact and Suitability of Dense Carbon Dioxide as a Green Solvent for the Treatment of PMMA of Historical Value
AU - Bartoletti, Angelica
AU - Soares, Inês
AU - Ramos, Ana Maria
AU - Shashoua, Yvonne
AU - Quye, Anita
AU - Casimiro, Teresa
AU - Ferreira, Joana Lia
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50006%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50006%2F2020/PT#
This research was financed by Fundação para a Ciência e a Tecnologia, Ministério da Ciência, Tecnologia, e Ensino Superior (FCT/MCTES), Portugal, through the funded research project “PlasCO2—Green CO2 Technologies for the Cleaning of Plastics in Museums and Heritage Collections” (PTDC/ARTOUT/29692/2017).
Publisher Copyright:
© 2023 by the authors.
PY - 2023/1/21
Y1 - 2023/1/21
N2 - Surface cleaning of plastic materials of historical value can be challenging due to the high risk of inducing detrimental effects and visual alterations. As a result, recent studies have focused on researching new approaches that might reduce the associated hazards and, at the same time, minimize the environmental impact by employing biodegradable and green materials. In this context, the present work investigates the effects and potential suitability of dense carbon dioxide (CO2) as an alternative and green solvent for cleaning plastic materials of historical value. The results of extensive trials with CO2 in different phases (supercritical, liquid, and vapor) and under various conditions (pressure, temperature, exposure, and depressurization time) are reported for new, transparent, thick poly(methyl methacrylate) (PMMA) samples. The impact of CO2 on the weight, the appearance of the samples (dimensions, color, gloss, and surface texture), and modifications to their physicochemical and mechanical properties were monitored via a multi-analytical approach that included optical microscopy, Raman and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies, and micro-indentation (Vickers hardness). Results showed that CO2 induced undesirable and irreversible changes in PMMA samples (i.e., formation of fractures and stress-induced cracking, drastic decrease in the surface hardness of the samples), independent of the conditions used (i.e., temperature, pressure, CO2 phase, and exposure time).
AB - Surface cleaning of plastic materials of historical value can be challenging due to the high risk of inducing detrimental effects and visual alterations. As a result, recent studies have focused on researching new approaches that might reduce the associated hazards and, at the same time, minimize the environmental impact by employing biodegradable and green materials. In this context, the present work investigates the effects and potential suitability of dense carbon dioxide (CO2) as an alternative and green solvent for cleaning plastic materials of historical value. The results of extensive trials with CO2 in different phases (supercritical, liquid, and vapor) and under various conditions (pressure, temperature, exposure, and depressurization time) are reported for new, transparent, thick poly(methyl methacrylate) (PMMA) samples. The impact of CO2 on the weight, the appearance of the samples (dimensions, color, gloss, and surface texture), and modifications to their physicochemical and mechanical properties were monitored via a multi-analytical approach that included optical microscopy, Raman and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies, and micro-indentation (Vickers hardness). Results showed that CO2 induced undesirable and irreversible changes in PMMA samples (i.e., formation of fractures and stress-induced cracking, drastic decrease in the surface hardness of the samples), independent of the conditions used (i.e., temperature, pressure, CO2 phase, and exposure time).
KW - conservation
KW - museum and design objects
KW - plastics
KW - poly(methyl methacrylate) (PMMA)
KW - supercritical carbon dioxide
KW - sustainable conservation
UR - http://www.scopus.com/inward/record.url?scp=85147949405&partnerID=8YFLogxK
U2 - 10.3390/polym15030566
DO - 10.3390/polym15030566
M3 - Article
C2 - 36771867
AN - SCOPUS:85147949405
SN - 2073-4360
VL - 15
JO - Polymers
JF - Polymers
IS - 3
M1 - 566
ER -