Assessing Static and Dynamic Response Variability due to Parametric Uncertainty on Fibre-Reinforced Composites

Alda Carvalho, Tiago A. N. Silva, Maria Amélia Ramos Loja

Research output: Contribution to journalArticlepeer-review


Composite structures are known for their ability to be tailored according to specific operating requisites. Therefore, when modelling these types of structures or components, it is important to account for their response variability, which is mainly due to significant parametric uncertainty compared to traditional materials. The possibility of manufacturing a material according to certain needs provides greater flexibility in design but it also introduces additional sources of uncertainty. Regardless of the origin of the material and/or geometrical variabilities, they will influence the structural responses. Therefore, it is important to anticipate and quantify these uncertainties as much as possible. With the present work, we intend to assess the influence of uncertain material and geometrical parameters on the responses of composite structures. Behind this characterization, linear static and free vibration analyses are performed considering that several material properties, the thickness of each layer and the fibre orientation angles are deemed to be uncertain. In this study, multivariable linear regression models are used to model the maximum transverse deflection and fundamental frequency for a given set of plates, aiming at characterizing the contribution of each modelling parameter to the explanation of the response variability. A set of simulations and numerical results are presented and discussed.
Original languageEnglish
Number of pages17
JournalJournal of Composites Science
Issue number1
Publication statusPublished - 1 Feb 2018


  • response variability of composites
  • parametric uncertainty characterization
  • multivariable linear regression models
  • composite laminates
  • static and free vibration analysis


Dive into the research topics of 'Assessing Static and Dynamic Response Variability due to Parametric Uncertainty on Fibre-Reinforced Composites'. Together they form a unique fingerprint.

Cite this