Arl13b regulates breast cancer cell migration and invasion by controlling integrin-mediated signaling

Research output: Contribution to journalArticle

3 Citations (Scopus)
4 Downloads (Pure)

Abstract

Breast cancer is the first cause of cancer-related mortality among women worldwide, according to the most recent estimates. This mortality is mainly caused by the tumors’ ability to form metastases. Cancer cell migration and invasion are essential for metastasis and rely on the interplay between actin cytoskeleton remodeling and cell adhesion. Therefore, understanding the mechanisms by which cancer cell invasion is controlled may provide new strategies to impair cancer progression. We investigated the role of the ADP-ribosylation factor (Arf)-like (Arl) protein Arl13b in breast cancer cell migration and invasion in vitro, using breast cancer cell lines and in vivo, using mouse orthotopic models. We show that Arl13b silencing inhibits breast cancer cell migration and invasion in vitro, as well as cancer progression in vivo. We also observed that Arl13b is upregulated in breast cancer cell lines and patient tissue samples. Moreover, we found that Arl13b localizes to focal adhesions (FAs) and interacts with β3-integrin. Upon Arl13b silencing, β3-integrin cell surface levels and FA size are increased and integrin-mediated signaling is inhibited. Therefore, we uncover a role for Arl13b in breast cancer cell migration and invasion and provide a new mechanism for how ARL13B can function as an oncogene, through the modulation of integrin-mediated signaling.

Original languageEnglish
Article number1461
JournalCancers
Volume11
Issue number10
DOIs
Publication statusPublished - 1 Oct 2019

Keywords

  • Actin cytoskeleton
  • Arl proteins
  • Cancer progression
  • Cell-extracellular matrix adhesion
  • Integrins

Fingerprint Dive into the research topics of 'Arl13b regulates breast cancer cell migration and invasion by controlling integrin-mediated signaling'. Together they form a unique fingerprint.

Cite this