Abstract
The solid-phase synthesis (SPS) of a structurally complex glycopeptide, using Sieber amide resin, was monitored by high resolution magic angle spinning NMR, demonstrating the further application of this technique. A synthetic peptidoglycan derivative, a precursor of a biologically active PGN, known to be involved in the cellular recognition, was prepared by SPS. The synthesis involved the preparation of an N-alloc glucosamine moiety and the synthesis of a simple amino acid sequence L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. Last step consisted the coupling, on solid-phase, of the protected muramyl unit to the peptide chain. Proton spectra with good suppression of the polystyrene signals in swollen resin samples were obtained in DMF-d(7) as a solvent and by using a nonselective 1D TOCSY/DIPSI-2 scheme, thus allowing to follow the SPS without losses of compound and cleavage from the resin. The assignment of the proton spectra of the resin-bound amino acid sequence and of the bound glycopeptide was achieved through the combination of MAS COSY, TOCSY and NOESY. Copyright (C) 2010 John Wiley & Sons, Ltd.
Original language | English |
---|---|
Pages (from-to) | 323-330 |
Journal | Magnetic Resonance in Chemistry |
Volume | 48 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Apr 2010 |