Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3- substituted derivatives

Mónica A. A. Vieira, Catia Pinheiro, Ruben M. Fernandes, João Paulo da Costa de Noronha, Cristina Prudêncio

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)


Quinoxaline is a chemical compound that presents a structure that is similar to quinolone antibiotics. The present work reports the study of the antimicrobial activity of quinoxalineN,N-dioxide and some derivatives against bacterial and yeast strains. The compounds studied were quinoxaline-1,4-dioxide (QNX), 2-methylquinoxaline-1,4-dioxide (2MQNX), 2-methyl-3-benzoylquinoxaline-1,4-dioxide (2M3BenzoylQNX), 2-methyl-3-benzylquinoxaline-1,4-dioxide (2M3BQNX), 2-amino-3-cyanoquinoxaline-1,4-dioxide (2A3CQNX), 3-methyl-2-quinoxalinecarboxamide-1,4-dioxide (3M2QNXC), 2-hydroxyphenazine-N,N-dioxide (2HF) and 3-methyl-N-(2-methylphenyl)quinoxalinecarboxamide-1,4-dioxide (3MN(2MF)QNXC). The prokaryotic strains used wereStaphylococcus aureusATCC 6538,S. aureusATCC 6538P,S. aureusATCC 29213,Escherichia coliATCC 25922,E. coliS3R9,E. coliS3R22,E. coliTEM-1 CTX-M9,E. coliTEM-1,E. coliAmpC Mox-2,E. coliCTX-M2 eE. coliCTX-M9. TheCandida albicansATCC 10231 andSaccharomyces cerevisiaePYCC 4072 were used as eukaryotic strains. For the compounds that presented activity using the disk diffusion method, the minimum inhibitory concentration (MIC) was determined. The alterations of cellular viability were evaluated in a time-course assay. Death curves for bacteria and growth curves forS. cerevisiaePYCC 4072 were also accessed. The results obtained suggest potential new drugs for antimicrobial activity chemotherapy since the MIC's determined present low values and cellular viability tests show the complete elimination of the bacterial strain. Also, the cellular viability tests for the eukaryotic model,S. cerevisiae, indicate low toxicity for the compounds tested.
Original languageEnglish
Pages (from-to)287-293
JournalMicrobiological Research
Issue number4
Publication statusPublished - Apr 2014


  • Antimicrobial activity
  • Cellular viability
  • Minimum inhibitory concentration
  • Quinoxaline N,N-dioxide derivatives


Dive into the research topics of 'Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3- substituted derivatives'. Together they form a unique fingerprint.

Cite this