TY - JOUR
T1 - Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor
AU - Levantesi, Caterina
AU - Serafim, Luísa S.
AU - Crocetti, Gregory R.
AU - Lemos, Paulo C.
AU - Rossetti, Simona
AU - Blackall, Linda L.
AU - Reis, Maria A. M.
AU - Tandoi, Valter
PY - 2002/10/1
Y1 - 2002/10/1
N2 - A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-β-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67 ± 13.86 mg P I-1 was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04 ± 1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of intensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 μm) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 μm) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria, but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.
AB - A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-β-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67 ± 13.86 mg P I-1 was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04 ± 1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of intensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 μm) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 μm) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria, but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.
UR - http://www.scopus.com/inward/record.url?scp=0036802414&partnerID=8YFLogxK
U2 - 10.1046/j.1462-2920.2002.00339.x
DO - 10.1046/j.1462-2920.2002.00339.x
M3 - Article
C2 - 12366750
AN - SCOPUS:0036802414
SN - 1462-2912
VL - 4
SP - 559
EP - 569
JO - Environmental Microbiology
JF - Environmental Microbiology
IS - 10
ER -