Abstract
Entomopathogenic nematodes are used as biological control agents against a broad range of insect pests. We ascribed the pathogenicity of these organisms to the excretory/secretory products (ESP) released by the infective nematode. Our group characterized different virulence factors produced by Steinernema carpocapsae that underlie its success as an insect pathogen. A novel ShK-like peptide (ScK1) from this nematode that presents high sequence similarity with the ShK peptide from a sea anemone was successfully produced recombinantly in Escherichia coli. The secondary structure of ScK1 appeared redox-sensitive, exhibiting a far-UV circular dichroism spectrum consistent with an alpha-helical secondary structure. Thermal denaturation of the ScK1 allowed estimating the melting temperature to 59.2 ± 0.1 °C. The results from toxicity assays using Drosophila melanogaster as a model show that injection of this peptide can kill insects in a dose-dependent manner with an LD50 of 16.9 µM per adult within 24 h. Oral administration of the fusion protein significantly reduced the locomotor activity of insects after 48 h (p < 0.05, Tukey’s test). These data show that this nematode expresses insecticidal peptides with potential as next-generation insecticides.
Original language | English |
---|---|
Article number | 754 |
Journal | Toxins |
Volume | 14 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2022 |
Keywords
- disulfide-rich peptide
- entomopathogenic nematodes
- excretory/secretory products
- fruit fly
- insecticidal toxins
- locomotor activity
- ShK
- toxicity assay