TY - JOUR
T1 - A Robust Bisection-Based Estimator for TOA-Based Target Localization in NLOS Environments
AU - Tomic, Slavisa
AU - Beko, Marko
AU - Dinis, Rui
AU - Montezuma, Paulo
N1 - This work was partially supported by Fundacao para a Ciencia e a Tecnologia under Project PEst-OE/EEI/UI0066/2014, Project UID/EEA/50008/2013, Project UID/EEA/50009/2013, and Program Investigador FCT under Grant IF/00325/2015. The associate editor coordinating the review of this letter and approving it for publication was Y. Shen.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - This letter addresses the problem of target localization in harsh indoor environments based on range measurements. To mitigate the non-line-of-sight (NLOS) bias, we propose a novel robust estimator by transforming the localization problem into a generalized trust region sub-problem framework. Although still non-convex in general, this class of problems can be readily solved exactly by means of bisection procedure. The new approach does not require to make any assumptions about the statistics of NLOS bias, nor to try to distinguish which links are NLOS and which are not. Unlike the existing algorithms, the computational complexity of the proposed algorithm is linear in the number of reference nodes. Our simulation results corroborate the effectiveness of the new algorithm in terms of NLOS bias mitigation and show that the performance of our estimator is highly competitive with the performance of the state-of-The-Art algorithms. In fact, they show that the novel estimator outperforms slightly the existing ones in general, and that it always provides a feasible solution.
AB - This letter addresses the problem of target localization in harsh indoor environments based on range measurements. To mitigate the non-line-of-sight (NLOS) bias, we propose a novel robust estimator by transforming the localization problem into a generalized trust region sub-problem framework. Although still non-convex in general, this class of problems can be readily solved exactly by means of bisection procedure. The new approach does not require to make any assumptions about the statistics of NLOS bias, nor to try to distinguish which links are NLOS and which are not. Unlike the existing algorithms, the computational complexity of the proposed algorithm is linear in the number of reference nodes. Our simulation results corroborate the effectiveness of the new algorithm in terms of NLOS bias mitigation and show that the performance of our estimator is highly competitive with the performance of the state-of-The-Art algorithms. In fact, they show that the novel estimator outperforms slightly the existing ones in general, and that it always provides a feasible solution.
KW - generalized trust region sub-problem (GTRS)
KW - non-line-of-sight (NLOS)
KW - Robust localization
KW - time of arrival (TOA)
KW - wireless sensor network (WSN)
UR - http://www.scopus.com/inward/record.url?scp=85029159881&partnerID=8YFLogxK
U2 - 10.1109/LCOMM.2017.2737985
DO - 10.1109/LCOMM.2017.2737985
M3 - Article
AN - SCOPUS:85029159881
SN - 1089-7798
VL - 21
SP - 2488
EP - 2491
JO - IEEE Communications Letters
JF - IEEE Communications Letters
IS - 11
M1 - 8007241
ER -