A Remark on Piecewise Linear Interpolation of Continuous Fourier Multipliers

Oleksiy Karlovych, Eugene Shargorodsky

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

Classical results by de Leeuw (Ann Math (2) 81:364–379, 1965) and Jodeit (Studia Math, 34:215–226, 1970) imply that, for every continuous Fourier multiplier a on Lp(ℝ), 1<p<∞, the piecewise linear function b, satisfying b(n)=a(n) for all n∈ℤ, is again a Fourier multiplier on Lp(ℝ). We observe that for every p∈(1,2)∪(2,∞), there exists a Lipschitz continuous periodic Fourier multiplier a on Lp(ℝ) and a set E⊂ℤ such that the piecewise linear function b with the nodes at the points of E, satisfying b(n)=a(n) for all n∈E, fails to be a Fourier multiplier on Lp(ℝ).
Original languageEnglish
Title of host publicationTbilisi Analysis and PDE Seminar
Subtitle of host publicationExtended Abstracts of the 2020-2023 Seminar Talks
EditorsRoland Duduchava, Eugene Shargorodsky, George Tephnadze
Place of PublicationCham
PublisherSpringer
Pages99-107
Number of pages9
ISBN (Electronic)978-3-031-62894-8
ISBN (Print)978-3-031-62893-1
DOIs
Publication statusPublished - 21 Aug 2024

Publication series

NameTrends in Mathematics
PublisherSpringer
Volume7
ISSN (Print)2297-0215
ISSN (Electronic)2297-024X

Keywords

  • Fourier multiplier
  • Function of bounded variation
  • Piecewise linear function

Cite this