TY - JOUR
T1 - A Photoswitchable Chalcone-Carbohydrate Conjugate Obtained by CuAAC Click Reaction
AU - Paulino, Micael
AU - Pereira, Maria Manuela A.
AU - Basílio, Nuno
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50006%2F2020/PT#
info:eu-repo/grantAgreement/FCT/9444 - RNIIIE/PINFRA%2F22161%2F2016/PT#
info:eu-repo/grantAgreement/FCT/Concurso para Financiamento de Projetos de Investigação Científica e Desenvolvimento Tecnológico em Todos os Domínios Científicos - 2017/PTDC%2FQUI-COL%2F32351%2F2017/PT#
info:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F00466%2F2017%2FCP1462%2FCT0013/PT#
Publisher Copyright:
© 2022 by the authors.
PY - 2022/3/29
Y1 - 2022/3/29
N2 - Flavylium/Chalcone-based molecular switches comprise features such as pH-gated photochromism and fluorescence properties that make them attractive for many applications, ranging from stimuli-responsive materials to photopharmacology. However, in contrast to other common photoswitches, the application of flavylium compounds in these areas remains largely unexplored. Among other possible reasons, this may be due to the lack of general strategies to attach these molecules to substrates such as polymers, nanoparticles, biomolecules, or surfaces. In this work, we have shown that a copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) can be employed to obtain a chalcone conjugate. We used an isosorbide carbohydrate to demonstrate this strategy and investigated the photochemical properties of the chalcone-isosorbide conjugate. The obtained results show that the photochemical properties of this new compound are similar to other equivalent flavylium/chalcone photoswitches, confirming the feasibility of the conjugation strategy.
AB - Flavylium/Chalcone-based molecular switches comprise features such as pH-gated photochromism and fluorescence properties that make them attractive for many applications, ranging from stimuli-responsive materials to photopharmacology. However, in contrast to other common photoswitches, the application of flavylium compounds in these areas remains largely unexplored. Among other possible reasons, this may be due to the lack of general strategies to attach these molecules to substrates such as polymers, nanoparticles, biomolecules, or surfaces. In this work, we have shown that a copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) can be employed to obtain a chalcone conjugate. We used an isosorbide carbohydrate to demonstrate this strategy and investigated the photochemical properties of the chalcone-isosorbide conjugate. The obtained results show that the photochemical properties of this new compound are similar to other equivalent flavylium/chalcone photoswitches, confirming the feasibility of the conjugation strategy.
KW - azide-alkyne click reaction
KW - flavylium salts
KW - photochromism
KW - photoswitches
UR - http://www.scopus.com/inward/record.url?scp=85152233207&partnerID=8YFLogxK
U2 - 10.3390/compounds2020008
DO - 10.3390/compounds2020008
M3 - Article
AN - SCOPUS:85152233207
VL - 2
SP - 111
EP - 120
JO - Compounds
JF - Compounds
IS - 2
ER -