TY - JOUR
T1 - A Parallel Multiobjective Metaheuristic for Multiple Sequence Alignment
AU - Rubio-Largo, Álvaro
AU - Castelli, Mauro
AU - Vanneschi, Leonardo
AU - Vega-Rodríguez, Miguel A.
N1 - Rubio-Largo, Á., Castelli, M., Vanneschi, L., & Vega-Rodríguez, M. A. (2018). A Parallel Multiobjective Metaheuristic for Multiple Sequence Alignment. Journal of Computational Biology, 25(9), 1009-1022. DOI: 10.1089/cmb.2018.0031
PY - 2018/9/1
Y1 - 2018/9/1
N2 - The alignment among three or more nucleotides/amino acids sequences at the same time is known as multiple sequence alignment (MSA), a nondeterministic polynomial time (NP)-hard optimization problem. The time complexity of finding an optimal alignment raises exponentially when the number of sequences to align increases. In this work, we deal with a multiobjective version of the MSA problem wherein the goal is to simultaneously optimize the accuracy and conservation of the alignment. A parallel version of the hybrid multiobjective memetic metaheuristics for MSA is proposed. To evaluate the parallel performance of our proposal, we have selected a pull of data sets with different number of sequences (up to 1000 sequences) and study its parallel performance against other well-known parallel metaheuristics published in the literature, such as MSAProbs, tree-based consistency objective function for alignment evaluation (T-Coffee), Clustal Ω, and multiple alignment using fast Fourier transform (MAFFT). The comparative study reveals that our parallel aligner obtains better results than MSAProbs, T-Coffee, Clustal Ω, and MAFFT. In addition, the parallel version is around 25 times faster than the sequential version with 32 cores, obtaining an efficiency around 80%.
AB - The alignment among three or more nucleotides/amino acids sequences at the same time is known as multiple sequence alignment (MSA), a nondeterministic polynomial time (NP)-hard optimization problem. The time complexity of finding an optimal alignment raises exponentially when the number of sequences to align increases. In this work, we deal with a multiobjective version of the MSA problem wherein the goal is to simultaneously optimize the accuracy and conservation of the alignment. A parallel version of the hybrid multiobjective memetic metaheuristics for MSA is proposed. To evaluate the parallel performance of our proposal, we have selected a pull of data sets with different number of sequences (up to 1000 sequences) and study its parallel performance against other well-known parallel metaheuristics published in the literature, such as MSAProbs, tree-based consistency objective function for alignment evaluation (T-Coffee), Clustal Ω, and multiple alignment using fast Fourier transform (MAFFT). The comparative study reveals that our parallel aligner obtains better results than MSAProbs, T-Coffee, Clustal Ω, and MAFFT. In addition, the parallel version is around 25 times faster than the sequential version with 32 cores, obtaining an efficiency around 80%.
KW - Memetic computing
KW - Metaheuristic
KW - Multiobjective optimization
KW - Multiple sequence alignment
UR - http://www.scopus.com/inward/record.url?scp=85053186520&partnerID=8YFLogxK
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000443955000005
U2 - 10.1101/103101
DO - 10.1101/103101
M3 - Article
AN - SCOPUS:85053186520
VL - 25
SP - 1009
EP - 1022
JO - Journal of computational biology : a journal of computational molecular cell biology
JF - Journal of computational biology : a journal of computational molecular cell biology
SN - 1066-5277
IS - 9
ER -